Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 18

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Research aimed at elucidating the causes of m igrations of thermoplastic resins — employed as solutions for reinforcement of porous stones — has been taken up. Solutions of butyl polymethacrylate have been used for the purpose, the limestone from the region of Pińczów being saturated with them in the tests concerned. The impact exerted by the degree of polymerization of resins, solvents and concentration on capillary ascent o f solutions, the degree of saturation of the stcnes, their drying capacity and finally on the process of migration of resins in the course of drying has been studied. The results of the investigations have made it possible to determine the paramétrés chesking the process o f migration of butyl polymethacrylate to the surface of Pińczów limestone. As has been ascertained, the main cause deciding about the course of migration is viscosity of solutions. Its degree may be adjusted by way of employing polymers with a higher degree of polymerization or by enhancing concentration of the solutions. The first route has been recognized as more efefctive since it provides for multiple repetition of the proceeding by means of diluted solutions what is of great significance from the viewpoint of conservation practice. Now as regards the solvents used, the best results have been obtained in the case of white spirit. Due to the specific phenomena accompanying its evaporation, solutions with a low degree of viscosity may be applied and the effect of structural reinforcement duly achieved. If aromatic hydrocarbons used as solvents, the viscosity of the solutions should amount to 10+15 cP. On the grounds of the results obtained an attempt has been made at elucidation of the phenomena of migration what enables selection of adequate paramétrés providing for structural reinforcement of the monuments built, or made, of porous materials.
EN
The above-presented paper by K.F.B. Hempel, who himself is well-known conservator and highly appreciated expert in the fie ld , deals with decay of marbles and terracotta and with the methods of their conservation. The goal the author of the comment has set before him consisted in dilating of some problems thus making them more intellegible for readers being not familiar with the problems discussed. The author broadens and makes comments of his own on such problems as the mechanism of patina forming in marble and its decay caused by the action of su lphuric oxides, temperature variations and water so luble salts; destructive e ffe c t of the foreign matter deposits on marble surfaces; application o f glues for joining the marble pieces; methods of supplementing the decrements; impregnating and structural reinforcing o f marbles apd terracotta, and, finally, the me thods applied in preparing the moulds for art casting o f replicas. In addition, the comment discusses the workability and usability of methods listed by F.B.K. Hempel under conditions of the Polish conservators’ practice.
FR
Sur la base des épreuves effectuées, il fut établi que le moyen le plus efficace d’enlèvement des couches des grès est l ’acdde fluorhydrique. On a également examiné l ’influence qu’exerce cet acide et le temps de la saturation sur la résistance mécanique des grès d’un liant silicique, argildque et calcaire. Il fut constaté qu’assortissant les paramètres appropriés (concentration, durée), on peut non seulement enlever les couches mais également accroître la résistance des gîrès. En outre, il fut établi que le fluorure de calcium qui se forme en résultat de la réaction de l ’acide avec le liant calcaire n’exerce aucune influence sur l'augmentation de la résistance. Une hypothèse fut posée que le phénomène observé provient en résultat de la précipitation de la silice hydratée sur les grains de sable qui se forme en conséquence de l’hydrolyse du quadrifluorure du silicium. En cas de la désintégration du grès, l ’acide fluorhydrique n ’exerce aucune action de consolidation. Les essais de la purification de la pierre effectués à l ’aide de l’acide fluorhydrique (6°/o) (grès arcosiques d’un liant silico-argilique et silico-calcaire) du portail de l ’église Ste. Marie Madeleine donnèrent des résultats positifs. L’enlèvement des couches épaisses s ’est effectué sans endommagement de la surface de pierre.
EN
The Romanesque doorway from Ołbin whose origins may be dated as early back as to the late 12-th century was built from blocks of arkose sandstone. During the long course of history its state of preservation gradually deteriorated and thus it had many times to be subjected to conservating treatments. Its surface was, among the others, reinforced by means of liquid glass and chemicals of the fluosilicate group. It seems, however, that the treatments applied did not bring intended effects and this probably was the reason why one part of the doorway has been coated with cement milk whereas the others co-ered with a protective layer of a hardly distinguishable polymer-type organic matter. Nevertheless, these superficial coatings have proved to be unable to prevent advancing decay and the stones were getting more and more disintegrated, maybe at even higher rate as it was the case at earlier date. Finally, the layers next to the stone surface begun to split and exfoliate and from underneath poured the powdered sandstone. This increasing decay has led to substantial decrements in the total mass and also to deformations in the plastic appearance of the doorway. In effect of investigations carried out it became possible to find that these destructions were, in the first line, caused by the action of water-soluble salts and water penetrating into the doorway from the church interior which the both occurrences were due to the fact that the outer surfaces of walls have been faced with clinker bricks hardly permeable for water. Although several expert bodies were meeting with this object in mind no clearly outlined programme of preservation works for the said doorway has been worked out in conclusion. The works carried out within the first stage comprised the following measures: encasing of the doorway to protect it against the immediate weather influences (mainly the waters'), securing the fragments by glueing the paper on their surfaces, removing the clinker bricks from the immediate neighbourhood of the doorway, and, finally, building of a cellar under it to stop the flow of ground waters. The undertaking of a full-scale treatment has become possible only on completion of examination of possibilities to apply epoxy resin solutions for structural impregnation and also on working out of the s.c. pocket-type method for stone saturation. Investigations in this respect were conducted at the Copernicus University, Toruń to order of the Historical Monuments Documentation Centre, Warsaw. The conservating works themselves were carried on in the years 1967 and 1968 and their plan covered the actions named below: a) superficial strengthening of pouring, delaminating and exfoliating portions of stones from which the doorway is built, . b) reinforcement of the breaking away fragments of doorway with the application of putties and fillings, c) removing of the superficial built-up layers with the aim to restore the stone porosity and ipso facto enable the impregnation, d) removing the cement and gypsum putties and fillings by means of which the former decrements in stones were filled up, e) extraction of water-soluble salts, f) structural impregnation of the entire doorway with the aim to reinforce the deepest stone layers, g) filling with putties the holes and pin cracks. The superficial reinforcing of stones was carried out by means of the 20 per cent methylbenzene solution of epoxy resin. The resin was hardened by treating it with triethylenetetraamine. For reinforcing of stone fragments that have broken and exfoliated thus threatening to flake the putty has been applied obtained by mixing the epoxy resin with powdered sandstone in 1 : 15 proportion. The putty was filled into pin cracks and then pressed. With the putties hardened a durable junction was obtained between the loose fragments and their bed. Thanks to the properties possessed by existing built-up layers they could be removed with the use of either chemical or mechanical means. Chemically were removed the layers formed in result of an usual action exerted by atmospheric components, and the 3 to 6 per cent hydrofluoric acid was applied for this purpose. Portions on which the afore-mentioned built-up layers have been found comprised well under 10 per cent of the total doorway area. The layers consisting of cements and organic matter not soluble in solvents available were removed mechanically by means of scrapers. With the dark-coloured built-up layers removed the stones of which the doorway is composed have regained their original colour, texture and plasticity. (However, it has proved impossible to restore to the superficial stone layers their original porosity. The reinforcing substances with which the stone pores were filled are unremovable and their porosity could be restored only by means of grinding-off the superficial layers being, of course, an inadmissible practice. The cement putties and some gypsum putties, too, applied during the former restorations of the doorway were removed, for they contributed to the accelerated destruction of stones, in addition forming black spots on the brighter coloured background. On completion of the above-mentioned works the next stage has been started, consisting in removing of water-soluble salts. A method of their forced migration to paper layer was applied using the fivefold coating of the entire doorway with water saturated paper sheets. Already the fourth consecutive paper coating did not reveal the presence of salt. The above method allowed to remove the salts from pores next to the stone surface which the fact is due to limited permeability of water into the deeper stone layers in effect of earlier applied treatments (N. B. migration of salts occurs only in parts saturated with water). As the superficial impregnation of doorway carried out by means of epoxy resin solution is able to prevent decay for a limited period of time only it has been decided to reinforce the structure of the doorway stones in their deepest possible layers (structural impregnation). This treatment was carried out using 10 per cent toluene-and-methyl alcohol solution of epoxy resin in the respective proportion of 1 : 2 and 1 : 3. The amount of methyl alcohol present in 'Solution was deciding for the rate of resin precipitation from it. At the 1 : 2 proportion the precipitation was beginning after about 20 hours whereas at 1 : 3 after about l'O hours. The first of the above solutions was applied in cases in which the need occurred to saturate the stones for more than 12 hours, the other one — for saturation periods not reaching the time given above. Solutions were prepared in portions of 1 to 4 litres to which 15 per cent of triethylenetetraamine was added in proportion to resin amount. They were introduced into the doorway stones by means of s.c. pooket-type method. The pockets were prepared in such a way that on the stone surface were put 5 to 6 layers of the water-saturated paper onto which, starting from their edges, the gypsum mortar was imposed forming the 1 to 2 cms wide framing at all sides. In the upper parts of so formed lining a filler was made from a piece of paper and the whole covered with gypsum . The separate stages of the pocket-forming may easily be seen from illustrations. All the elements of doorway were covered with pockets. With the gypsum mortar dried the tightness of pockets was examined by means of solvents and leakages removed. The impregnation has been carried out by pouring the solution into pockets and its steady supplementing so that the pockets could be kept full throughout the entire period of saturation. During one-day operation were saturated the doorway elements with sizes allowing to complete saturation and removing the pockets themselves within 30 hours. It has been found that within this period the epoxy resin gel forming in gypsum pores was still thin enough to enable the easy removal of pockets. They could be removed without damaging the stones as the object after impregnation was secured with cellophane having inhibitory effect on evaporation of solvents. Since the rests of gypsum remained on the stone surfaces they had to be removed at once thus not permitting their hardening by the active resin. After cleaning operation the saturated elements were insulated by means of cellophane from the ambient atmosphere for a period of 10 to 14 days to allow the maximum rate of precipitation of resin from the solvent. Three hundred ninety litres of resin solution were used for this purpose of which the amount some 295 litres have been introduced into stone, the balance being absorbed by gypsum and lost during the operation. Within the last operation the supplementing of slight stone decrements in form of holes and pin cracks with the epoxy putties has been carried out. For this purpose, much the same as in the course of the above-described operation, a mixture composed of 1 part of epoxy resin and 15 parts powdered sandstone has been applied. To this mixture containing hardener (15 per cent) petroleum spirits were added to obtain better conditions for hardening. The putties prepared for this operation are characteristic of their higher degree of porosity at the same time showing good water-repellent properties and impact strength similar to that of actual stone. For preparing the putties the white sandstone powder was used so that after their hardening it proved necessary to patinate them together with traces left by pockets („crabs”) using mineral dyes with 1 per cent addition of epoxy resin solution acting as hardener. The illustrations show the doorway in state after preservation operations.
FR
La console médiévale en pierre calcaire est très endommagée; outre les dommages mécaniques on y voit les fines couches de pierre qui se sont écalées e t la surface s ’est pulvérisée. Le calcaire décomposé s ’amoncellait dans les cavités de la sculpture (il n ’etait pas enlevé) et par sa quantité croissante on peut se rendre compte du développement de la détérioration. Pour expliquer ce développement on a examiné les particularités de la pierre (planche I); par extraéction on a déterminé le pourcentage des sels solubles dans l’eau contenus dans la poudre (c’est à dire dans le produt de la decomposition delà pierre) dans le calcaire, dans les briques du mur dans le mortier en ciment qui a servi a seller la console dans le mur (planches II et IV); on a déterminé l’imbibition, l’absorptivité et l’humidité des matériaux dont on a extrait les sels (planche IV); on a fait l ’analyse chimique de ces sels (planche III) et on a mesuré l ’humidité et la température à l’é glise (diagrammes 1 et 2). Par ces analyses et observations on a constaté que l’endommagement de l’objet en question a été causé par l’action des sels solubles dans l’eau (dont 7% a peu près se trouvent dans le produit de la décomposition du calcaire) qui proviennent du mortier en ciment employé pour seller la console dans le mur. En plus l ’humidité et les changements de la température ont aussi causé des endommagements (la pierre est très hydrophile et s’imbibe facilement; l’église n’est pas chauffée, pendant les mesurages la température la plus basse était de —15°C, et l’humidité relative de l’air montait à 99%). La détérioration était d’autant plus intense que la console avait été peinte plusieurs fois (les restes de couleurs apparaissent encore) et sous les couches de couleurs à l ’huile les sels se crystallisaient dans les pores de la pierre. En tenant compte de l’état de conservation de l’objet, des particularités de la pierre et des causes des endommagements, on a proposé de transporter la console au musée et la remplacer à l ’église par une copie, de consolider les fines couches de le pierre qui s ’écalent, d’enlever le mortier en ciment de la plaque de la console et d’extraire les sels de la pierre.
EN
The Institute of Conservation and Connoisseurship existing within the Faculty of Fine Arts at the Copernicus University, Toruń hais as its task the teaching of specialists in the field of conservation i(theory), museology, conservation and restoration of paintings and polychromed sculptures, of conservation and restoration of paper and leather and, finally, of conservation and restoration of architectural details, at the same time conducting research work in the respective didactic lines. The educational processes at the Institute are specific as to their nature which the fact can be attributed to interconnection of the human, naltural and a rtistic branches within the same University. It was "this interconnection in fact th a t had essentially influenced the scope of conservator education within which both theoretical and p r a c tc a l studies could be firmly interlocked. A quite special type of conservation school was created where the problems of knowledge relating to monuments, th e ir protection and p re se rvation together with those forming scientific basis of conservation are inseparately linked with the conservation practice, with restoration, conservation and investigations on monuments in the broader sense of expression. The Institute consists of six didactic and research divisions, namely, th a t of Technology and Artistic Techniques, Mobile Monument Conservation, Paper and Leather Conservation, Architectural Detail Conservation, Conservation Art, and Museology and History of Art, employing 3'9 workers under contracts and the other eleven giving the lectures on the non-constant employment basis. However, the above figures do not comprise the members of teaching staff involved in non-specialised subjects as e.g. philosophy, foreign languages and s.o. The teaching and scientific staff is composed of a rt historians, conservators specializing in the theory ,of conservation, m u seologists, the artists practically active in the field of conservation, conservators 'specializing in technological problems, the chemists, physists, microbiologists, architects, painters, engravers, photographers and book binders. . The complete courses of studies at the Institute, ir re spectively of specialization chosen by a student are lasting for a fdve-year period. After presenting a diploma work and passing through the series of p re scribed examinations the graduates take a degree of master of conservation and connoisseurship within the specific branch. No more than twenty five to th irty candidates are admitted to the In stitu te to s ta rt the studies and the number of those graduated up to- the present day amounts to 242. Graduates with practical specializations (e.g. conservation of paintings, paper or architectural details) in addition to their 'skills enabling them to undertake the conservation and restoration of monuments are adequately trained to be able to evaluate the works of art, to prepare a historical, iconographie or inventory documentation, to investigate the state ,of p re servation or find the cause of damages suffered by objects. The level of their professional training is by no means less adequate in technological and technical (investigations, ’in works requiring knowledge to prepa re a proper documentation (in form of d ra wings, paintings, photographs, as well as th a t using X-ray or other raying methods of analysis) and to conduct the research work and introduce modifications in materials applied )n conservation. Graduates havlinig theoretical specializations (art of conservation and museology) leave the In stitu te with a supply of basic knowledge allowing to meet the needs arising in conservation work and within a normal museum practice (connoisseurship) with a special stress put on morphological analysis, evaluation and a ttributing the monuments pf a rt being a subject of the conservator’s and museologist’s interest. During the course of their studies they are also trained in history, theory and th e basic practical problems ■involved-in a conservator’s or museologist’s activities and acquire a number of practical professional skills (e.g. preparing of inventories and survey-and-drawing documentation, photography, preparing of museum shows and exhibitions etc.). In addition to their educational activities the Institute workers carry out a number of research works the results of which are published in a specialized periodical „Zeszyty Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu, seria Zabytkoznawstwo i Konserwatorstwp” (The Scientific Papers of the Nicolaus iCopernicus University, Toruń, series: Connoisseurshiip and Conservation) or in other Polish and foreign specialized periodicals. A special mention should be devpted to works r e lating to conservation of monuments from wood, stone, brick, glass and paintings, those dealing with technical and technological investigations on mortars and plasters, research work aimed at finding the method to identify the p ain ter’s putties and pigments, works connected with identification of micro-organisms and th e ir destruction, those dealing with the conservation of iron; no less interesting are the research works in the field of both history and theory of monument protection and conservation, organisation ,of conservation service, collectioning and museum activities, those connected with problems of a rt history and history of aesthetic judgements, history of architecture (mediaeval and modern), town- planning including problems of conservation, history of building techniques, and works relating to the late-mediaeval sculpture and painting with special stress laid upon the problems of iconography and also those concerning the painting of the 10th and the 20th centuries. As may be seen fr,om the above list of research themes there are possibilities at the Institute to develop a rath e r many-sided range of problems and the widely varying research lines. This is possible owing to interconnection of human and n atura l sciences. As a result of the said interconnection the work of a rt being the main subject of all research work involved can be analysed many-sidedly both as to its form and subject and also with respect to its material substance with a particular stress on factors causing the damages to this substance, its protection, preservation, fixing or reinforcing. In tight connection with the above problems can also be analysed those of protection of monuments and th e ’r display in museums. Thus, it may be said that works carried on at the Institute represent a new kind of interdisciplinary branch of knowledge which enables to investigate universally the work of a rt and to subject it to conservating treatment.
EN
The author presents the problems as he sees them himself as professor of chemistry, long-time director of the Institute of Monuments and Conservation, attached to the Copernicus University in Toruń. For more than twenty years he has been directing technological studies and conservation of stone monuments in Poland. The author refers to a number of conservation works undertaken in this field in Europe. He brings to the fore a research process preceding today’s conservation practice in the field of monuments of fine arts. In Poland some dozens of representatives of natural sciences cooperate on a regular base in the execution of conservation works. Polish conferences attended by specialists, held in 1981 and 1982, have shown a serious contribution of exact sciences. It has also been demonstrated that it is not possible to train conservators of works of fine arts without the help of chemists, microbiologists and physicists. Their task is not only to adapt methods of exact sciences for the examination of works of art but also to study materials, find out reasons for their destruction, analyze their condition, choose conservation materials and means, determine properties of the materials and, when necessary, to modify them. The author pays much attention to the coordination of studies. In view of the non-existence of the institute of conservation, it is necessary to create possibilités for such coordination in order to join forces operating in various centres. A lack of a specialized Polish magazine and limited access to foreign publications does not facilitate this task. In the form of thirty detailed theses the author presents main trends which should be continued in Polish investigations, basing on the existing higher institutes, state-owned monuments, conservation workshops, scientific and research institutes in different branches. He also puts forward a number of general postulates, especially in the field of coordination of studies, programming, information, scientific trial periods etc.
EN
Despite considerable progress made by the conservation of stone monuments, we still observe an accelerated disintegration of monuments which had been subjected to conservation. The cause of this phenomenon could lie in work conducted by amateurs and the application of unsuitable methods or measures by professional conservators. The article discusses the impact of the professional level of conservators upon the correct execution of their work, and postulates the legal protection of the profession of the conservator of historical monuments (as is the case in the medical profession). The author criticises such operations as the removal of the outer layers of stone surfaces, their desalination and structural reinforcement. The article mentions methods and measures which are judged correct or incorrect from the point of view of a permanent protection of stone monuments from further damage. The author is convinced that permission to use assorted factory-made aids should be given by appropriate agencies upon the basis of tests conducted by a suitable institute.
EN
The Easter Island, an islet (180 m2) situated on the Pacific, has become a point of interest already since its discovery by Jacob Roggeven in 1722. This interest should in the first place be ascribed to stone sculptures which are there and which strike with their forms and dimensions. Original sculptures (known as moai) stood on stone platforms (the so-called ahu - photo 1) but due to some unexplained reasons they got thrown down (photo 2). At present there are over 600 moai sculptures on the Easter Island (called Rapa Nui by the natives). Part of them (28) have been placed anew on ahu (photos 3, 4, 5), others rest on them or in their vicinity, while some of them are on the roads leading from quarries (photo 6) or (the biggest number) in a quarry which had been an extinct volcano of Rano Ravahu (photos 7, 8). The condition of the sculptures gave rise to concern and therefore upon the recommendation of UNESCO studies were made on them by G. Hyvert in 1972 and by the author of this article in 1981. This article presents an outline of the report passed on to UNESCO in 1982. The report gave a description of the condition of the sculptures (photos 9, 10, 11) and explained reasons for the decay of the stones. It also put forward proposals for conservation. In order to define causes of the decay studies have been made on a degree of the tightening of the stones (photo 13), ability to lift up water and organic fluids, humidity, dampness of sculptures, temperature of their surface, composition and texture of stratifications, kind of microflora as well as the quantity and kind of soluble salts in water contained in stones and in soil. The stratification was determined on the basis of the examination of grindings of stone samples under a stereoscope microscope (photo 14), examination of scraps in a scanning microscope (photos 15 and 16) as well as on the basis of a spectrophotometric infrared analyses, photocolorimetry and diffractional X-ray analysis. On the basis of the studies made it has been found out that the main factors destroying the sculptures include rain water, changes of temperature, microorganisms and, in some cases, water-soluble salts. The action of the above-mentioned factors is enhanced by a mineralogie composition, structure and texture of the rock of which the sculptures were made (volcanic andesite tuff, in which, apart from proper rock components such as glaze, plagioclases, angite, peridotite and allophane there also appear basalt scraps of a different size). It has been assumed that silt components are removed by rain, which brings about the loosenning of the cohesion of surface layers. Rain water is also a factor enabling the formation of tight and hard deposits on the surface of sculptures, whose main component is silica in form of opal. This silica is formed due to decomposition of aluminosilicates and it is possible that microorganisms parasitizing om the surface of sculptures participate in this process (photo 12). The following species have been distinguished: the algae (Cyanophyceae), leafy lichens (close to Phizocarpon species). The algae and leafy lichens affect the stones very strongly — the surface in which they are is markedly impaired in a 1 mm layer. In working out a programme of conservation work attention has been paid to the causes of stones’ decay. The main emphasis has been put on the protection of sculptures against the effect of water, which will make it possible to restrain a decomposition of stone components, prevent the development of microorganisms and curtail a destructive action of the salt. Techniques of consolidating the impaired parts of the stones, removal of deposits and microorganisms as well as cementing the stones and making up the missing parts have been discussed as well. In conclusion it has been stated that conservation works on sculptures should be undertaken as soon as possible, as every year of delay brings about irretrievable loss leading to the transformation of statues into a shapeless block of stones. It has also been proposed that the works should be carried out by outstanding conservators under the auspices of UNESCO.
FR
Les é tu d e s tech n o lo g iqu es de la couche p ic tu ra le et du crépi fo n t p a rtie in tég ra le de la c o n se rv a tio n des p e in tu re s mu ra le s. Elles so n t to u jo u rs p récéd ées d ’une coupe afin de m e ttre en év id en c e la s tra tig ra p h ie de to u te s les couches o rig in a le s e t des re p e in ts év en tu e ls. L a coupe des couches p ic tu ra le s e t des c répis sans un d u rc issem en t p ré a lab le , e st p re sq u e impossible. La ta ille des éch an tillo n s no n d u rc is s’accompagne fo rc ém en t d’un e d é sin tég ra tio n du c rép i — le lia n t c a lc a ire s’e ffrite e t les g ra in s de la ch a rg e m in é ra le s ’é p a rp ille n t. P o u r le d u rc issem en t de la s tru c tu r e des c rép is pore u x on a ap p liq u é une so lu tio n d ’ép o x y d e à 60°7o d an s le mé lange des d isso lv an ts composé de m é tan o l e t de to lu èn e (2 :1), ad d itio n n é du d u rc is s e u r tr ié th y - le n e te tra am in e (10% p a r ra p p o r t à la masse de la résine). Les é ch an tillo n s des c rép is avec la p o ly ch ro mie é ta ie n t plongés dans c e tte so lu tio n p e n d a n t une h eu re . E n su ite on les re tir a it, on e n le v a it le su p e rflu de ré s in e de la su rfa c e à l ’aide de p a p ie r - f iltr e e t on les e n v e lo p p a it h e rm é tiq u em e n t d an s des feu ille s en poly é th y lèn e . Les é ch an tillo n s im p ré g n é s e t en v e lo p pés sé ch a ien t dans un e tem p é ra tu re de 50° p e n d a n t deux h eu re s, afin d’a c c é lé re r le p ro c e ssu s du d u rc issem en t de la résine. L ’é ch an tillo n d u rc i é ta it e n su ite plongé d ans un bloc d ’ép o x y d e sans disso lv an t, ad d itio n n é du d u rc is s e u r tr ie th y le n e te tra am in e (12°/o p a r r a p p o r t à la masse de la résine). A p rè s le d u rc isse men t, le bloc de ré s in e avec l’é ch a n tillo n é ta it ta illé à l’aide de p o u d re de corindon à p e tits g ra in s e t de l ’huile p a ra ffin é e su r un p la te a u de v e rr e mat. A près ce tte o p é ra tio n on en lev a it le su p e rflu de la p o u d re de corindon e t de l ’h u ile p a ra ffin é e en n e tto y a n t la su rfa c e à l’aide d ’alcool é th y liq u e . Nos é tu d e s o n t d ém o n tré , q u ’il é ta it né c e ssa ire d ’e ffe c tu e r s im u lta n ém e n t deux coupes, e t n o tam m e n t: a) la coupe v e rtic a le , p e rp e n d ic u la ire à l ’axe du sy stèm e optiq u e du microscope, d e stin é a u x m e su re s des couches m ic rom é triq u e s a p p a ra is s a n t su r la su rfa c e du crépi, b) la coupe oblique, sous un angle de 45°, p e rm e tta n t de mieux d is c e rn e r les couches p a rtic u liè rem e n t m in ces, p a r ex emp le les re s te s de la p e in tu re m u ra le a p p a ra is s a n t p a rfo is sous la couche des re p e in ts (enduit) e t couches p ic tu ra le s.
FR
La sculpture en pierre (calcaire) subissant une destruction par suite de l’action des sels solubles dans l’eau a été soumise à la conservation. Après avoir enlevé de la surface de la sculpture les produits de la désintégration de la pierre apparaissant sous forme de poudre formant une épaisse couche, on a consolidé les restes de la polychromie et collé les parties de la pierre qui s ’écaillaient. Lors du traitement on a appliqué les solutions de polymetacrylate de méthyle dans du bichloroethane. Afin d’éviter une nouvelle pénétration des sels solubles du sol à la sculpture, on l ’a extraite du mur, dans lequel elle était enchâssée au moyen de mortier. Après l ’enlèvement des restes de mortier, on a entrepris le dessalement de la pierre. Dans la première étape le dessolement a été effectué dans une chambre spécialement construite à ces fins
14
Publication available in full text mode
Content available

Konserwacja korony murów

63%
FR
Les matériaux employés jusqu’alors en vue de la conservation des couronnements des murs ne répondent plus aux exigences actuelles des conservateurs. Le mortier de ciment, appliqué le plus couramment comme couche d’isolation superficielle, constitue un matériel trop dur en même temps que trop fragile. Il est sujet aux craquelures et la perte d’adhérence en raison de la différence de son coefficient de dilatation thermique et de celui du mur qui lui sert de support. Il agit parfois de façon destructive sur certains éléments d’alliage du mur. Les autres matériaux appliquée à l’occurence tels que les asphaltes, le verre d’eau et les solutions de la caséine dans les mélanges contenant des remplisseurs minéraux, démontrent également des caractères nocifs qui excluent actuellement leur emploi dans la conservation des monuments historiques. Dans le cadre des recherches relationnéies des expériences ont été faites en vue de l’application des résines mélangés au sable pour former des couches d’isolation superficielles sur les couronnements des murs. Il a été constaté qu’elles possèdent les qualités suivantes: 1) Grâce aux propriétés hydrophobes considérables la résine époxyde constitue un empêchement efficace à la pénétration de l’eau tout en conservant la porosité des couches d’isolation qui permet l’évaporation de l’humidité des murs. 2) Les propriétés mécaniques des couches d’isolation ainsi que leur porosité et possibilité1 d’absorption peuvent être modifiées en large part par l’emploi du sable en quantités diverses par rapport à la résine (tableaux 6 et 10). On obtient des matériaux d’une plus grande résistance mécanique en utilisant un mélange sableux d’au moins deux fractions de grains d’une grandeur sensiblement différente (tableaux: 7, 8 et 11). Dans ce dernier cas, la successivité des composants additionnés au mélange conditionne les propriétés du produit. La possibilité d’obtenir un produit de telle ou autre qualité permet de couvrir le couronnement des murs par deux ou par plusieurs couches d’isolation, différant les unes des autres par leurs propriétés: porosité1, saturation et résistance mécanique. 3) En employant le sable en quantité propre, par rapport à la résine (plus de 30 fractions sur l fraction de la résine), les couches d’isolation possèdent un coefficient de dilatation thermique similaire au coefficient des composants du mur (tableau 12). 4) Les mélanges contenant de grandes quantités de sable (plus de dix fractions sur une fraction de la résine) ne sont pas sujets à la contraction au cours de leur durcissement, ce qui fait qu’aucune tension ne se manifeste entre les couches d’isolation et le mur. Cette particularité permet également de recouvrir le mur par des couches d’isolation d’épaisseur voulue. 5) Les épreuves effectuées pour mesurer le degré de la insistance contre l’humidité et les mutations de la température ainsi que la résistance contre le gel ont permis de constater que ces couches d’isolation devraient être suffisamment résistantes à l’action des facteurs atmosphériques. 6) Pour faciliter l’addition des divers composants, on peut déluer la résine dans des dissolvants de quantité restreinte (10—20%: benzène, toluène, sylène, methanol, étanol, propanol). Une dissolution trop forte n’est pas recommandée, car en abaissant le degré de la viscosité de la résine les mélanges en question s’avèrent peu adhérents ce qui rend, en pratique, leur application difficile. La dissolution de la résine à l’aide des hydrocarbonates aromatiques prolonge la période de son durcissement, ce qui permet de l’introduire dans une quantité plus grande de mélanges. Toutefois l’application des hydrocarbonates aromatiques se manifeste d'une façon nocive par une réduction de la résistance mécanique des produits. L’influence des suppléments d’alcool aliphatique est bien moins nuisible (tableaux 1 et 2). 7) La résistance mécanique des produits est indépendante de la qualité de la réfeine époxyde (tableau 4), toutefois, pour des raisons pratiques les résines contenant un grand nombre d’époxydes semblent être les mieux appropriées. Elles se distinguent par la plus basse viscosité en même temps que par la plus grande fluidité*; donc, il est facile de préparer leurs solutions et il n’est pas nécessaire d’employer un grand nombre de dissolvants pour obtenir des solutions faciles à mélanger au sable. 8) Pour durcir les résines, il faudrait employer une petite quantité du durcisseur (jusqu’à 50%). Malgré que la resistance mécanique des produits augmente à mesure de la concentration de l’amine (tableau no. 5), son application en plus grande quantité n’est pas recommandable vu que l’amine non-lié, favorise la pénétration de l’eau à travers les couches d’isolation· 9) Pour obtenir la consolidation complète de la résine il faut, ayant acquis le durcissement des mélanges (qui dure plusieurs jours), la rechauffer jusqu’à la température de plus de 100°C (tableau no. 3).
FR
La Commission des Conservateurs en 1952 ayant procédé à une expertise des peintures polychromes gothiques (1350—60) à l ’Eglise St. Jean à Gnieizno, décréta que l’aspect actuel de ces peintures est en opposition flagrante avec les principes de base propres à ce genre d ’art plastique. Elle constata également que les briques des .murs sur lesquels ces peintures s ’étalent, subissent un procès de destruction évidente. Compte tenu des conclusions établies par la Commission précitée, on entreprit (Ateliers de Conservation Toruń) sur la demande du Ministère de la Culture et des Arts, des investigations relatives à l ’êtat actuel de ces peintures et aux procédés de conservation dont pourraient être saisies les briques des supports tombant en ruine. Les peintures qui sont effectuées sur une couche très mince de blanc de chaux, ne peuvent être reportées sur d’autres supports. Les suivantes conclusions furent tirées en résultat des recherches effectuées: a) Concernant les peintures polychromes: 1) pendant la conservation (an. 1920) on effectua des pointillages et des retouches dépassant les limites des activités de restauration admises tant au point de vue historique que par rapport aux valeurs esthétiques de l ’oeuvre en question. Les peintures murales précitées passaient ju squ ’alors pour n’avoir jamais été retouchées ni repeintes; 2) en resultat d’une méthode de restauration erronnée (fusion de la cire) et des procédés chimiques survenus au cours du temps (surtout le changement des colorants de cuve), les couleurs originales des peintures ont subi des modifications notoires, b) Concernant la conservation des briques: 1) Les briques furent détruites par l’action des sels solubles dans l ’eau. 2) Les briques peuvent être colmatées (méthode d’injection) à l’aide de solutions des résines artificielles d’une petite viscosité dans des dissolvants de volatilité moyenne (au cours des épreuves on appliquait le polychrorure de vinyl chloré, cependant il est indicable d ’employer le polymetakrylate de methyl). Le colmatage en question donne en resultat l’accroissement de la resistance des briques a l ’action de l’eau et la diminution de l ’imbibition, de la porosité ouverte et de la .pénétration. Le procédé ne cause pas la fermeture complete des pores et limite le mouvement libre des sels dans les parties imbibées. Les briques sur lesquelles se trouvent les peintures polychromes n’ont jamais été imprégnées ju squ ’à ces temps.
16
63%
EN
The article discusses the causes o f the damage and heretofore methods o f the conservation o f brick walls and red ceramic; it presents m ethods universally used in conservation and in the Institute for the Conservation o f Architectonic Elements and Details. The authors examine the structural reinforcement o f ceramic, the supplementation o f gaps, and the reconstruction o f the objects, as well as problems connected with the socalled binding of walls (the filling o f gaps in the mortar). It has be found that the method o f exchanging damaged bricks for new ones can be replaced by suitable conservation operations, which structurally reinforce the bricks, supplement the existing gaps by means o f brick-alike mortars whose physical and mechanical properties resemble brick, and the application o f suitable mortar (also with similar properties) for the purposes o f binding the walls. The article contains the programme o f research conducted by the staff o f the Institute for the Conservation of Architectonic Elements and Details, made possible by a grant funded by the Committee for Scientific Research ( 1993— 1995).
17
Publication available in full text mode
Content available

Szanowny Panie Redaktorze!

63%
EN
Basing on the results of laboratory studies and works carried ouit on the building, the present condition of paintings and bricks in S t John’s Church art Gniezno has been described. Attention has been paid to the extent of th e sa linity of th e (Structure, sealing of the paintings, po ssibility of w a x extraction, cleaning and fixing of polychromy. The ability of fluids to migrate into the -pores of the paintings and bricks has also been examined. As a result of the works done a programme of conservation procedure has been prepared, including a performance technique and the best agents to be used. Comprehensive studies have shown that Sandsteinverfestiger H, a silicone product made by Wacker, is most suitable for the preservation of the building.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.