Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  fuleren
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Medycyna Pracy
|
2016
|
vol. 67
|
issue 6
817-831
EN
Malignant tumors are one of the main causes of death in Poland. One of the objectives of contemporary biomedical research is to maximize the effects of therapeutic strategies. The actions undertaken to improve therapeutic agents are aimed at reducing the side effects of cancer treatments. Another direction of investigations is the search for protective substances that reduce the toxicity of the drug to normal cells. Carbon-based nanomaterials (fullerenes and their derivatives, graphene, carbon nanotubes, nanodiamonds) are a broad class of nanoparticles that have potential biomedical applications in both therapy and diagnostics. The aim of this paper is to review biological properties of fullerenols in the context of their use in various strategies of cancer treatments. The authors also discuss the possibility of simultaneous use of nanoparticles in therapy and diagnosis, that is, in theranostics. Current knowledge indicates that fullerenes and their hydrophilic derivatives, especially fullerenols, show low or no toxicity. They may contribute to the inhibition of tumor growth and protection of normal cells through their antioxidant properties, as well as to the regulation of expression of genes involved in apoptosis and angiogenesis, and stimulation of the immune response. Gadoliniumcontaining endohedral fullerenes are less toxic as a contrast agents in magnetic resonance imaging, and they may also inhibit tumor growth, which is a promising result for theranostics. Med Pr 2016;67(6):817–831
PL
Do głównych przyczyn zgonów w Polsce zalicza się nowotwory złośliwe. Jednym z celów współczesnych badań biomedycznych jest zmaksymalizowanie efektów działania stosowanych strategii leczniczych. Podejmowane działania doskonalące środki terapeutyczne są ukierunkowane na ograniczenie działań niepożądanych terapii przeciwnowotworowych. Innym kierunkiem badań jest poszukiwanie substancji ochronnych, które zmniejszą toksyczność leków wobec komórek prawidłowych. Nanotechnologia umożliwia projektowanie wyspecjalizowanych nanocząstek, dzięki którym możliwe będzie skuteczniejsze leczenie chorób nowotworowych, a także ich bezpieczne diagnozowanie. Nanomateriały na bazie węgla (fulereny i ich pochodne, grafen, nanorurki węglowe, nanodiamenty) stanowią obszerną grupę nanocząstek, które mają potencjalne zastosowania biomedyczne zarówno w terapii, jak i diagnostyce. Celem niniejszej pracy jest omówienie właściwości biologicznych fulerenoli w kontekście ich wykorzystania w różnych strategiach terapii przeciwnowotworowych. W pracy omówiono także możliwości jednoczesnego wykorzystania nanocząstek w terapii i diagnostyce, czyli teranostyce. Obecny stan wiedzy wskazuje, że fulereny i ich hydrofilowe pochodne, w szczególności fulerenole, wykazują niską toksyczność lub jej brak. Poprzez swoje właściwości antyoksydacyjne, a także regulujące ekspresję genów zaangażowanych w proces apoptozy i angiogenezy oraz stymulowanie odpowiedzi immunologicznej, mogą przyczyniać się do hamowania rozrostu guza i ochrony komórek prawidłowych. Gadolin zamknięty w klatce fulerenu jest mniej toksyczny jako środek cieniujący w rezonansie magnetycznym i może jednocześnie hamować rozwój nowotworu, co jest obiecującym wynikiem dla teranostyki. Med. Pr. 2016;67(6):817–831
EN
Fullerenes are molecules composed of an even number of carbon atoms of a spherical or an ellipsoidal, closed spatial structure. The most common fullerene is the C60 molecule with a spherical structure – a truncated icosahedron, compared to a football. Fullerenes are widely used in the diagnostics and medicine, but also in the electronics and energy industry. Occupational exposure to fullerene may occur during its production. The occupational concentrations of fullerenes reached 0.12–1.2 μ/m³ for nanoparticles fraction (< 100 nm), which may evidence low exposure levels. However, fullerene mostly agglomerates into larger particles. Absorption of fullerene by oral and respiratory routes is low, and it is not absorbed by skin. After intravenous administration, fullerene accumulates mainly in the liver but also in the spleen and the kidneys. In animal experiments there was no irritation or skin sensitization caused by fullerene, and only mild irritation to the eyes. Fullerene induced transient inflammation in the lungs in inhalation studies in rodents. Oral exposure does not lead to major adverse effects. Fullerene was not mutagenic, genotoxic or carcinogenic in experimental research. However, fullerene may cause harmful effects on the mice fetus when administered intraperitoneally or intravenously. Pristine C60 fullerene is characterized by poor absorption and low toxicity, and it does not pose a risk in the occupational environment. The authors of this study are of the opinion that there is no ground for estimating the maximum allowable concentration (NDS) of pristine fullerene C60. Fullerene derivatives, due to different characteristics, require separate analysis in terms of occupational risk assessment. Med Pr 2016;67(3):397–410
PL
Fulereny są cząsteczkami złożonymi z parzystej liczby atomów węgla o sferycznej, kulistej lub elipsoidalnej, zamkniętej strukturze przestrzennej. Najbardziej popularnym fulerenem jest cząsteczka C60 o kulistej budowie – ściętego dwudziestościanu foremnego, przypominającego piłkę nożną. Fulereny znajdują szerokie zastosowanie przede wszystkim w diagnostyce i medycynie, ale również w przemyśle elektronicznym i energetycznym. Narażenie zawodowe na fuleren może wystąpić głównie przy jego produkcji. Stężenia w środowisku pracy fulerenów, opisane w literaturze, wynosiły 0,12–1,2 μ/m³ dla frakcji nanocząstek (< 100 nm), co może świadczyć o niewielkim narażeniu. Fuleren jednak w dużej części aglomeruje do większych cząstek. Wchłanianie fulerenu drogą pokarmową i oddechową jest niewielkie oraz nie jest on absorbowany przez skórę. Po podaniu dożylnym fuleren może kumulować się w wątrobie oraz w mniejszym stopniu w śledzionie lub nerkach. Nie obserwowano działania fulerenu drażniącego ani uczulającego na skórę w badaniach na zwierzętach, jedynie słabe działanie drażniące na oczy. W badaniach inhalacyjnych na gryzoniach fuleren wywoływał przejściowe zmiany zapalne w płucach. Narażenie drogą pokarmową nie wywoływało większych negatywnych skutków. Fuleren nie wykazywał działania mutagennego ani genotoksycznego w badaniach eksperymentalnych. Nie ma opublikowanych danych dotyczących rakotwórczego działania nanocząstek fulerenu u ludzi i zwierząt. Istnieją natomiast doniesienia o możliwym szkodliwym wpływie fulerenu na płód u myszy po podaniu dootrzewnowym lub dożylnym. Fuleren w czystej postaci charakteryzuje się słabym wchłanianiem i niską toksycznością oraz nie stanowi zagrożenia w środowisku pracy. Autorzy niniejszej pracy stoją na stanowisku, że nie ma podstaw do wyznaczenia najwyższego dopuszczalnego stężenia (NDS) fulerenu C60 w niezmodyfikowanej formie. Pochodne fulerenów, z uwagi na odmienne właściwości, wymagają osobnej analizy pod względem szacowania ryzyka zawodowego. Med. Pr. 2016;67(3):397–410
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.