Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 4

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  mathematical realism
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
PL
The received view concerning mathematics is the one, that mathematics is a priori, and that mathematical knowledge develops via 'intelektuelle Anschauung' rather than by analyzing empirical data. Mathematical proofs seems to be immune to empirical refutation, and in particular the development of mathematics does not in any way resemble the development of e.g. physics. On the other hand, it is quite clear, that mathematics play a fundamental role in science, and it is often considered to be rather just a useful tool, which provides a language and a conceptual system allowing to express statements concerning empirical world. Such views stress the dependence of mathematics upon physics. In the article, the author presents two quite different aspects of this problem: the ontological and the methodological aspects. According to Quine, our argumentation in favor of mathematical realism should be based on the analysis of ontological commitment of empirical theories. There is no other compelling argument for mathematical realism. According to Lakatos, mathematical knowledge develops in a way similar to empirical science: it is fallible, and the proper model to describe it is the model of proofs and refutations. In the article the author describes and contrast these two points of view.
2
Publication available in full text mode
Content available

Matematyka - nauka o fikcjach?

88%
PL
According to mathematical realism, mathematics describes an abstract realm of mathematical entities, and mathematical theorems are true in the classical sense of this term. In particular, mathematical realism is claimed to be the best theoretical explanation of the applicability of mathematics in science. According to Quine's indispensability argument, applicability is the best argument available in favor of mathematical realism. However, Quine's point of view has been questioned several times by the adherents of antirealism. According to Field, it is possible to show, that - in principle - mathematics is dispensable, and that so called synthetic versions of empirical theories are available. In his 'Science Without Numbers' Field follows the 'geometric strategy' - his aim is to reconstruct standard mathematical techniques in a suitable language, acceptable from the point of view of the nominalist. In the first part of the article, the author briefly presents Field's strategy. The second part is devoted to Balaguer's fictionalism, according to which mathematics is indispensable in science, but nevertheless can be considered to be a merely useful fiction.
EN
In the article, the philosophical significance of quantum computation theory for philosophy of mathematics is discussed. In particular, I examine the notion of “quantum-assisted proof” (QAP); the discussion sheds light on the problem of the nature of mathematical proof; the potential empirical aspects of mathematics and the realism-antirealism debate (in the context of the indispensability argument). I present a quasi-empiricist account of QAP’s, and discuss the possible impact on the discussions centered around the Enhanced Indispensabity Argument (EIA).
Studia Semiotyczne
|
2018
|
vol. 32
|
issue 2
107-129
PL
Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia (charakterystyczną raczej dla nauk empirycznych) do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: (1) metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; (2) optymizm epistemologiczny: jesteśmy wyposażeni w wystarczająco dobre środki poznawcze, aby uzyskać wgląd w owo uniwersum. Pojęcie rozwiązania problemu matematycznego Gödel rozumie znacznie szerzej niż jako podanie matematycznego dowodu – chodzi raczej o znalezienie wiarogodnych aksjomatów, prowadzących do rozwiązania. Stawiany w artykule problem analizuję na przykładzie hipotezy kontinuum.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.