Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 4

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  maximum likelihood estimator
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The exponentiated Burr Type XII (EBXII) distribution has wide applications in reliability and economic studies. In this article, the estimation of the probability density function and the cumulative distribution function of EBXII distribution is considered. We examine the maximum likelihood estimator, the uniformly minimum variance unbiased estimator, the least squares estimator, the weighted least squares estimator, the maximum product spacing estimator, the Cramér–von-Mises estimator, and the Anderson–Darling estimator. We derive analytical forms for the bias and mean square error. A simulation study is performed to investigate the consistency of the suggested methods of estimation. Data relating to the wind speed and service times of aircraft windshields are used with the studied methods. The simulation studies and real data applications have revealed that the maximum likelihood estimator performs more efficiently than its remaining counterparts.
EN
A Fibonacci-type probability distribution provides the probabilistic models for establishing stopping rules associated with the number of consecutive successes. It can be interpreted as a generalized version of a geometric distribution. In this article, after revisiting the Fibonaccitype probability distribution to explore its definition, moments and properties, we proposed numerical methods to obtain two estimators of the success probability: the method of moments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them performed were compared in terms of the mean squared error. A numerical study demonsrated that the MLE tends to outperform the MME for most of the parameter space with various sample sizes.
EN
In this paper, a new Poisson area-biased Ailamujia distribution has been formulated to analyse count data. It was created by combining two distributions: the Poisson and areabiased Ailamujia distributions, using the compounding technique. Several distributional properties of the formulated distribution were studied. Its ageing characteristics were determined and expressed explicitly. A variety of diagrams were used to demonstrate the characteristics of the probability mass function (pmf) and the cumulative distribution function (cdf). The parameter of the developed model was estimated by employing the maximum likelihood estimation approach. Finally, two data sets were used to demonstrate the effectiveness of the investigated distribution.
EN
This paper introduces a new generalization of the Pareto distribution using the Marshall Olkin generator and the method of alpha power transformation. This new model has several desirable properties appropriate for modelling right skewed data. The Authors demonstrate how the hazard rate function and moments are obtained. Moreover, an estimation for the new model parameters is provided, through the application of the maximum likelihood and maximum product spacings methods, as well as the Bayesian estimation. Approximate confidence intervals are obtained by means of an asymptotic property of the maximum likelihood and maximum product spacings methods, while the Bayes credible intervals are found by using the Monte Carlo Markov Chain method under different loss functions. A simulation analysis is conducted to compare the estimation methods. Finally, the application of the proposed new distribution to three real-data examples is presented and its goodness-of-fit is demonstrated. In addition, comparisons to other models are made in order to prove the efficiency of the distribution in question.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.