Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  microparticles
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Objectives Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has considerable applicative potential for both qualitative and quantitative analyses of elemental spatial distribution and concentration. It provides high resolutions at pg-level detection limits. These qualities make it very useful for analyzing biological samples. The present study responds to the growing demand for adequate analytical methods which would allow to assess the distribution of nanostructured molybdenum(IV) disulfide (MoS₂) in organs. It was also motivated by an apparent lack of literature on the biological effects of MoS₂ in living organisms. The study was aimed at using LA-ICP-MS for comparing micro- and nanosized MoS2 ditribution in selected rat tissue samples (lung, liver, brain and spleen tissues) after the intratracheal instillation (7 administrations) of MoS₂ nano- and microparticles vs. controls. Material and Methods The experimental study, approved by the Ethics Committee for Animal Experiments was performed using albino Wistar rats. This was performed at 2-week intervals at a dose of 5 mg/kg b.w., followed by an analysis after 90 days of exposure. The MoS₂ levels in control tissues were determined with the laser ablation system at optimized operating conditions. The parameter optimization process for the LA system was conducted using The National Institute of Standards and Technology (NIST) glass standard reference materials. Results Instrument parameters were optimized. The study found that molybdenum (Mo) levels in the lungs of microparticle-exposed rats were higher compared to nanoparticle-exposed rats. The opposite results were found for liver and spleen tissues. Brain Mo concentrations were below the detection limit. Conclusions The LA-ICP-MS technique may be used as an important tool for visualizing the distribution of Mo on the surface of soft samples through quantitative and qualitative elemental mapping.
EN
Objectives Ionizing radiation was known to cause disruption of cytoskeleton. However, the disorganization of the cytoskeleton leads to form microparticles (MP) that carry membrane and cytoplasmic constituents from their parent cells they are released from. Therefore, authors investigated the effect of the occupational exposure to low doses of ionizing radiation on MP levels. Material and Methods The current study was conducted on 38 healthy medical workers occupationally exposed to low doses of ionizing radiation and 29 controls matched by gender, age, and smoking habits. The MP levels measured by flow cytometry were classified as positive or negative phosphatidylserine (PS⁺ or PS⁻), and phenotyped according to their cellular origin. Results Total MP (PS–/PS+) levels, regardless of phenotype, were significantly higher in workers occupationally exposed to ionizing radiation than in healthy individuals (p = 0.0004). Negative phosphatidylserine microparticles were predominant in medical exposed workers and, to a lesser extent, in controls (68% and 57%, respectively). With regard to phenotypic characterization of cellular origin, MP derived from platelets (CD41a+), endothelial (CD146+), leucocytes (CD45+) and erythrocytes (CD235a+) MP were significantly enhanced in exposed workers compared with controls (p < 0.0001). However, no significant difference was found in the proportion of the other blood elements in the peripheral circulation between the 2 groups. Serum levels of C-reactive protein were normal for all individuals. In addition, no association was observed between MP levels and the studied confounding factors. Conclusions The results suggest that elevated circulating MP levels represent an indicator of cellular damage caused by medical exposure to low doses of ionizing radiation. By consequence, the quantification of MP seems to be a useful biomarker for assessing the negative effects of occupational exposure to ionizing radiation. Int J Occup Med Environ Health 2018;31(6):783–793
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.