Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  optical conductivity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Path of Science
|
2017
|
vol. 3
|
issue 8
3001-3010
EN
Certain treatments done to binary CdS, such as incorporating Ni onto CdS produces ternary thin films may cause major optical parameters that have a number of applications including for solar cell device fabrication. In this paper, we report on the effect of surface passivation on the band gap and other related optical properties of CdNiS thin films. Thin films for CdxNi1-xS were prepared on glass substrates by chemical solution method. Effects of surface passivation and variation of the volume of nickel ions on the optical properties CdS hence obtaining CdxNi1-xS thin films was investigated. It was observed that the thin films hard an average Transmittance above 68 %, with reflectance below 25 % across UV-VIS-NIR region. A plot of (αhν) 2 versus hν gave energy band gap between 2.55–3.49 eV for as-grown samples and 2.82–3.50 eV for annealed samples. The passivated samples had band gap energy values within the range 2.85–3.12 eV. It was concluded that an increase in concentration of Cd2+ and Ni2+ ions in the reaction led to an increase the band gap while optical conductivity ranged between 3.78 1011–2.40 1012 S-1.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.