Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  probability measures
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
PL
The paper can be regarded as a short and informal introduction to noncommutative calculi of probability. The standard theory of probability is reformulated in the algebraic language. In this form it is readily generalized to that its version which is virtually present in quantum mechanics, and then generalized to the so-called free theory of probability. Noncommutative theory of probability is a pair (M, φ) where M is a von Neumann algebra, and φ a normal state on M which plays the role of a noncommutative probability measure. In the standard (commutative) theory of probability, there is, in principle, one mathematically interesting probability measure, namely the Lebesgue measure, whereas in the noncommutative theories there are many nonequivalent probability measures. Philosophical implications of this fact are briefly discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.