Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 3

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  quantum gravity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Time is absolute in standard quantum theory and dynamical in general relativity. The combination of both theories into a theory of quantum gravity leads therefore to a “problem of time”. In my essay, I investigate those consequences for the concept of time that may be drawn without a detailed knowledge of quantum gravity. The only assumptions are the experimentally supported universality of the linear structure of quantum theory and the recovery of general relativity in the classical limit. Among the consequences are the fundamental timelessness of quantum gravity, the approximate nature of a semiclassical time, and the correlation of entropy with the size of the Universe.
2
75%
EN
Quantum geometry on a discrete set means a directed graph with a weight associated to each arrow defining the quantum metric. However, these ‘lattice spacing’ weights do not have to be independent of the direction of the arrow. We use this greater freedom to give a quantum geometric interpretation of discrete Markov processes with transition probabilities as arrow weights, namely taking the diffusion form ∂+f = (−Δθ + q − p)f for the graph Laplacian Δθ, potential functions q, p built from the probabilities, and finite difference ∂+ in the time direction. Motivated by this new point of view, we introduce a ‘discrete Schrödinger process’ as ∂+ψ = ı(−Δ + V )ψ for the Laplacian associated to a bimodule connection such that the discrete evolution is unitary. We solve this explicitly for the 2-state graph, finding a 1-parameter family of such connections and an induced ‘generalised Markov process’ for f = |ψ|2 in which there is an additional source current built from ψ. We also mention our recent work on the quantum geometry of logic in ‘digital’ form over the field F2 = {0, 1}, including de Morgan duality and its possible generalisations.
EN
I address the question whether the wave function in quantum theory exists as a real (ontic) quantity or not. For this purpose, I discuss the essentials of the quantum formalism and emphasize the central role of the superposition principle. I then explain the measurement problem and discuss the process of decoherence. Finally, I address the special features that the quantization of gravity brings into the game. From all of this I conclude that the wave function really exists, that is, it is a real (ontic) feature of Nature.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.