Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 3

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  scalability
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Wireless sensor networks (WSNs) are ad hoc and self-configuring networks having the possibility that any sensor node can connect or leave the network. With no central controller in WSN, wireless sensor nodes are considered responsible for data routing in the networks. The wireless sensor nodes are very small in size and have limited resources, therefore, it becomes difficult to recharge or replace the battery of the sensor nodes at far places. The present study focused on reducing the battery consumption of the sensor nodes by the deployment of the newly proposed Fault Tolerance Multipath Routing Protocol (MRP-FT) as compared with the existing Low Energy Adaptive Clustering Hierarchy (LEACH) protocol under particle swarm optimisation based fault tolerant routing (PSO-FT) technique. The proposed algorithm of MRP-FT-based on the dynamic clustering technique using Boltzmann learning of the neural network and the weights were adjusted according to the area of networks, number of nodes and rounds, the initial energy of nodes (E0), transmission energy of nodes (d
EN
The impact of complexity within government and societal systems is considered relative to the limitations of human cognitive bandwidth, and the resulting reliance on cognitive biases and systems of automation when that bandwidth is exceeded. Examples of how humans and societies have attempted to cope with the growing difference between the rate at which the complexity of systems and human cognitive capacities increase respectively are considered. The potential of and urgent need for systems capable of handling the existing and future complexity of systems, utilizing greater cognitive bandwidth through scalable AGI, are also considered, along with the practical limitations and considerations in how those systems may be deployed in real-world conditions. Several paradoxes resulting from the influence of prolific Narrow Tool AI systems manipulating large portions of the population are also noted.
EN
The impact of complexity within government and societal systems is considered relative to the limitations of human cognitive bandwidth, and the resulting reliance on cognitive biases and systems of automation when that bandwidth is exceeded. Examples of how humans and societies have attempted to cope with the growing difference between the rate at which the complexity of systems and human cognitive capacities increase respectively are considered. The potential of and urgent need for systems capable of handling the existing and future complexity of systems, utilizing greater cognitive bandwidth through scalable AGI, are also considered, along with the practical limitations and considerations in how those systems may be deployed in real-world conditions. Several paradoxes resulting from the influence of prolific Narrow Tool AI systems manipulating large portions of the population are also noted.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.