The aim of this study was to investigate four sources of implied motion in static images (a moving object as the source of implied motion, hand movements of the image creator as the source of implied motion, past experiences of the observer as the source of implied motion, and fictive movement of a point across an image as the source of implied motion). In the experiment of the study, participants orally described 16 static images that appeared on the screen of a computer. The aim was to find whether participants had used any motion-related word to describe each image. It was assumed that using motion-related words to describe a static image was an indication that the image had created a sense of motion for the observer. These results indicated that all four types of implied motion could create a significant sense of motion for the observer. Based on these results, it is suggested that observing these images could lead to simulating the actions involved in those motion events and the activation of the motor system. Finally, it is proposed that the three characteristics of being rule-based (clearly-defined), continuous, and gradual are critical in perceiving that image as a fictive motion.
This article looks at metaphor aptness from the perspective of the class-inclusion model of metaphor comprehension and those models that assume a componential nature for the meanings of concepts. When the metaphor X is a Y is processed, the concept of X is included in a metaphorical class that is represented by Y, which is usually the most typical member of the metaphorical class. Degree of saliency of the defining feature in the vehicle and the extent to which this feature matches a relevant dimension of topic is the key factor in the degree of aptness of the metaphor. Degree of aptness becomes more complex in those metaphors that describe an abstract concept in terms of another concept. These metaphors include X into a metaphorical class through the mediation of those concepts that are associated to the abstract concept. If the associated concepts have a high degree of typicality in the metaphorical class, they could be better mediators for including the abstract concept into the metaphorical class. The variations of abstract concepts across individuals and their dependency on contexts and cultures could explain why such metaphors may have different degrees of aptness for different people.
By conducting an examination of the mapping process in metaphor comprehension, this article suggests that a set of superficially different metaphors can be considered to be isomorphic to an underlying generic metaphor. In other words, a set of seemingly different metaphors with different domains can be categorized under a single generic metaphor. The generic metaphor is in the general form of X is in some kind of semantic relationship with Y. When this generic metaphor is realized in specific-level forms, a number of metaphors are produced which are isomorphic to each other, although their domains could be completely different in appearance. In other words, there is a deep homogeneity among a set of concretely different metaphors. A generic metaphor can be seen as a semantic frame for all specific metaphors that are isomorphic to it. Since base and target domains of a given metaphor can be very different in terms of concrete features, the mapping of the base into the target must be mediated by the domain of its underlying generic metaphor.
This article looks at the semantic space of abstract and concrete concepts from the perspective of distributed models of conceptual representations. It focuses on abstract metaphorical classes and the mechanisms through which these concepts are processed. When the metaphor X is a Y is understood, X is included in the abstract metaphorical class of Y. This metaphorical class is abstract because the most of semantic features of Y are filtered out through a suppressive-oriented mode of processing. It is suggested that abstract metaphorical classes of living things are usually defined by a single or a very small set of semantic features. Therefore, such metaphorical classes are highly abstract. On the other hand, abstract metaphorical classes of nonliving things are defined by a relatively larger cluster of semantic features. Therefore, abstract metaphorical classes of nonliving things have a relatively higher degree of concreteness compared to those of living things. In other words, abstract metaphorical classes of living things and nonliving things are rather different in terms of nature and the structure of semantic space.
The domain of motion events is widely used to metaphorically describe abstract concepts, particularly emotional states. Why motion events are effective for describing abstract concepts is the question that this article intends to answer. In the literature of the field, several reasons have been suggested to be behind the suitability of motion events for describing these concepts, such as high concreteness of motion events, their high imageability, and the ability of comprehender to simultaneously imagine components of motion events. This article suggests that motion events are particularly effective for metaphorical description of those domains which have the feature of dynamic change over a period of time. This is particularly the case with emotional states. Since changes in emotions take place throughout a period of time, they could best be described by motion events which have the same feature. In other words, the continuous change in emotions is understood in terms of continuous change in the location of a moving object in the 3D space. Based on the arguments of embodied theories of cognition, it would be no surprise to see the involvement of similar areas of the brain in understanding emotions and motions.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.