Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 3

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the paper the optimal design of forecasting contracts in principal-agent setting is investigated. It is assumed that the principal pays the agent (the forecaster) based on an announced forecast and an event that materializes next. Such a contract is called incentive compatible if the agent maximizes her payoff when she announces her true beliefs. This paper relaxes the assumption present in earlier works on this subject that agent’s beliefs are deterministic by allowing them to be random (i.e. stemming from estimation). It is shown that for binary or nominal events the principal can learn only expected values of agent’s predictions in an incentive compatible way independent of agent’s signal space. Additionally it is proven that incentive compatible payment schemes give the agent a strictly positive incentive to improve the precision of her estimates.
EN
In this article, we investigate contingency tables where the entries containing small counts are unknown for data privacy reasons. We propose and test two competitive methods for estimating the unknown entries: our modification of the Iterative Proportional Fitting Procedure (IPFP), and one of the Monte Carlo Markov Chain methods called Shake-and-Bake. We use simulation experiments to test these methods in terms of time complexity and the accuracy of searching the space of feasible solutions. To simplify the estimation procedure, we propose to pre-process partially unknown contingency tables with simple heuristics and dimensionality-reduction techniques to find and fill all trivial entries. Our results demonstrate that if the number of missing cells is not very large, the pre-processing is often enough to find fillings for the unknown values in contingency tables. In the cases where simple heuristics are insufficient, the Shake-and-Bake technique outperforms the modified IPFP in terms of time complexity and the accuracy of searching the space of feasible solutions.
PL
Praca opisuje algorytm optymalizacyjny rozwiązujący w efektywny sposób problem wyboru optymalnej taryfy w telefonii komórkowej. Ze względu na bardzo dużą liczbę możliwości łączenia usług telekomunikacyjnych w taryfy rozważany problem optymalizacyjny jest złożonym nieliniowym zagadnieniem programowania kombinatorycznego. W niniejszej pracy pokazujemy, że tego typu zadanie może zostać efektywnie rozwiązane przy pomocy programowania w logice z ograniczeniami (constraint logic programming). Wykorzystanie takiego podejścia dodatkowo pozwala na stworzenie modelu, który może być łatwo modyfikowany. Zapewnia to możliwość jego łatwego wykorzystania w praktyce biznesowej, gdzie składowe taryf telekomunikacyjnych podlegają częstym zmianom.
EN
We present an efficient algorithm that solves the telecommunication rate plan optimization problem. It is a complex and non-linear combinatorial programming task if we take into account realistic structures of offers available for mobile telephony subscribers. In the paper we show that constrained logic programming is an efficient approach to finding an optimal solution of this problem. Additionally, application of constrained logic programming allows us to formulate the problem in a simple way that provides a low-cost maintenance of the solution in practical applications when the rate plan structure often changes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.