Naturalism claims that everything that exists is Nature. There does not exist any other reality, apart from the natural one. Naturalists require that all phenomena have to be explained only by their natural causes. Natural causes are the ones that are accessible for scientific cognition. Science (physics) tries to describe this reality basing on observation and experiment as the foundation of creating theoretical constructs (theories) pertaining to natural phenomena. Mark Steiner, in his book entitled The Applicability of Mathematics as a Philosophical Problem, puts forward a surprising thesis that contemporary physicists in their work retreat from the naturalist vision of science because-as the author states-the real scientific activity does not comply with their basic methodological and philosophical convictions (with naturalism). To support his thesis he points to numerous cases of significant discoveries in the newest history of physics in which the decisive role was played by human imagination and not experimental facts. This way of discovering laws in contemporary physics is-in his view-antinaturalist in the sense that it relies more on human invention, on manipulating formal structures by the use of mathematical analogies than on the methods of classical empiricism. Such an approach-in his opinion-privileges a human and not naturalist (empirical) point of view. Steiner regards that it indicates a turn towards an anthropocentric viewpoint in the methodology of physics. In my view it is an over-interpretation of “natural” cognitive procedures existing in contemporary science and relying on the use of a well-known scheme: problem- hypothesis-criticism-problem modification. Moreover, Steiner’s suggestions do not match facts concerning the development of the newest cosmology in which scientific development is stimulated by using sophisticated observations.
PL
Naturalizm jest poglądem głoszącym, że jedyną istniejącą rzeczywistość jest przyroda (natura). Naturalista wymaga, by zjawiska były wyjaśniane poprzez odwołanie się do ich naturalnych przyczyn, dostępnych poznaniu naukowemu, na bazie obserwacji i eksperymentu. Tymczasem Mark Steiner, w książce The Applicability of Mathematics as a Philosophical Problem stawia zaskakującą tezę, iż współcześni fizycy w swej pracy odchodzą od naturalistycznej wizji nauki; twierdzi on, że rzeczywista działalność naukowa fizyków pozostaje w sprzeczności z ich podstawowymi przekonaniami metodologicznymi i ontologicznym naturalizmem. Na poparcie swojej tezy wskazuje na liczne przypadki znaczących odkryć z najnowszej historii fizyki, w których powstaniu decydującą rolę odegrała wyobraźnia ludzka, a nie fakty doświadczalne. Ten sposób odkrywania praw we współczesnej fizyce jest – twierdzi Steiner – antynaturalistyczny w tym sensie, że bardziej polega na ludzkiej inwencji, na manipulacjach strukturami formalnymi przy wykorzystaniu matematycznych analogii, niż na metodach klasycznego empiryzmu. Takie podejście uprzywilejowuje ludzki, a nie przyrodniczy (empiryczny), punkt widzenia. Steiner uważa, że świadczy to o zwrocie ku antropocentrycznemu punktowi widzenia w metodologii fizyki. W moim przekonaniu jest to nadinterpretacja „naturalnych” procedur poznawczych występujących we współczesnej nauce, a polegających na stosowaniu znanego schematu: problem-hipoteza-obserwacja-krytyka-modyfikacja. Ponadto sugestie Steinera nie przystają do faktów odnoszących się na przykład do rozwoju najnowszej kosmologii, w której postęp naukowy stymulowany jest wyrafinowanymi obserwacjami.
The sociology of science propagates the thesis about the social nature of all knowledge, however, Karl Mannheim, the most eminent representative of this way of thinking, tends to treat mathematics and logic differently. Mannheim considered mathematics and logic as disciplines of knowledge which are not amenable to social determination. The representatives of the Strong Programme of the sociology of knowledge raise once again the problem of the status of mathematics and logic. They aim to show that these sciences can be also reasonably analysed by means of sociological tools. In their considerations they refer to the ideas of Ludwig Wittgenstein and Imre Lakatos. They are convinced that Wittgenstein’s Remarks on the Foundations of Mathematics and Lakatos’s Proofs and Refutations opened a way to a sociological approach to mathematics.
PL
Socjologia wiedzy głosi tezę o społecznej naturze wszelkiej wiedzy, jednak w twórczości najwybitniejszego przedstawiciela tego sposobu myślenia, Karla Mannheima pojawia się niekonsekwencja wyrażająca się skłonnością do odmiennego traktowania matematyki i logiki. Mannheim rozważał matematykę i logikę jako dziedziny wiedzy nie podlegające społecznej determinacji. Przedstawiciele mocnego programu socjologii wiedzy na nowo podejmują problem statusu matematyki i logiki. Chcą pokazać, że również te nauki można zasadnie i sensownie analizować, odwołując się do narzędzi socjologicznych. W swych rozważaniach nawiązują do poglądów Ludwiga Wittgensteina i Imre Lakatosa. W szczególności są przekonani, że dzieła Ludwiga Wittgensteina Remarks on the Foundations of Mathematics i Imre Lakatosa Proofs and Refutations otwierają drogę socjologicznemu podejściu do matematyki.
The contemporary physical and cosmological theories confront philosophers and methodologists with a problem of scientific character of the considered ideas. It is mainly connected with the issue of their empirical testing. We know that many conceptions of contemporary physics, such as the conceptions of superstrings or of multiverse, have not been confirmed by even a single observation or experiment. In this situation there appear attempts to “weaken” methodological requirements imposed on theories to consider them as scientific after all. The challenge that physicists, philosophers and methodologists face is to attempt to define a feasible, possible to perform, non-empirical verification procedure in the case when these theories postulate the existence of basically non-observable areas of reality.
PL
Współczesne teorie fizyczne i kosmologiczne ponownie stawiają przed filozofami i metodologami problem naukowości rozważanych idei. Wiąże się to głównie z kwestią ich empirycznego testowania. Wiemy, że wiele koncepcji współczesnej fizyki teoretycznej takich jak superstruny czy multiwszechświat jak dotąd nie doczekały się ani jednej obserwacji czy eksperymentu, które by je potwierdzały. W tej sytuacji pojawiają się próby osłabienia wymogów metodologicznych nakładanych na teorie, by móc nadal uważać je za naukowe. Wyzwanie, przed którym stają fizycy, filozofowie i metodolodzy polega na próbach określenia możliwej do przeprowadzenia nieempirycznej procedury weryfikacyjnej w przypadku, gdy teorie te postulują istnienie zasadniczo nieobserwowalnych obszarów rzeczywistości.
This paper is an attempt to review the historically existing types of demonstration of mathematical theorems. The author shows how the notion of mathematical proof has changed through the time from the moment when mathematicians realised (thanks to the philosophical method) the necessity to justify their theses until a precise notion of proof has appeared in the framework of the formal method. Next, the author considers the possibility of modifying the notion of mathematical proof under the influence of the development of computer sciences.
The paper is an attempt to present the cognitive functions of mathematics in relation to empirical sciences. Firstly - mathematics is a 'generator' of mathematical categories used in natural sciences. In this sense mathematics is a science about the tools of cognition which it creates or perfects. Secondly - mathematics plays the role of 'prism' through which we view the world because some phenomena e.g. from the micro- and macro-world can only be seen through the prism of mathematical structures and notions. And thirdly - mathematics is also a 'selector' of cognitive content. It eliminates from the cognitive field these phenomena which presently can't be grasped by the existing mathematical structures. It is worth noticing that the functions of mathematics: 'selector' and 'prism' are complementary in some sense; although they are opposites ('prism' lets you 'see' something, and 'selector' restricts this 'seeing'), they don't exclude each other.
The author presents Einstein's viewpoint on the issue of the relation between mathematics and the world. Mathematics, as Einstein seems to suggest, cannot model the structure of the world in an absolutely adequate way since, if mathematical theorems are certain, they don't apply to the reality. However from the fact that something cannot be done in an adequate way, it doesn't follow that it can't be done at all. Mathematics can and should be applied to desrcibe the reality, but in such a case its theorems are not certain. Mathematics is a formal science. To be able to state something about the world it must be filled with real meaning - which for Einstein means that mathematical asertions, after a suitable interpretation, must be linked through a network of experimental procedures with the world of nature. Einstein, as it appears, applied these general suggestions to approach the problem of geometry of real space.
In the paper there are presented two proposals of the interpretations of the applications of mathematics in the natural sciences - realistic and instrumentalistic. The realistic conception, in accordance with the successes of science, maintains that there exists some kind of correspondence between the mathematical structures and the internal structure of the world. It is expressed in the thesis of the mathematicality of nature. The instrumentalistic approach separates the cognitive content of the scientific theory from the mathematical means of expression of the content. In this approach the mathematical categories do not represent any aspect of the modelled reality. In the final part of the paper the author undertakes such an attempt of approaching the applications of mathematics which, while combining the advantages of the above discussed conceptions, would be devoid of their disadvantages.
The aim of this paper is a presentation, specification and criticism of the thesis proclaiming the mathematicality of nature. The author distinguishes between the structural and the functional aspects of this thesis. With such an interpretation this thesis has a strong methaphysical interpretation. However such thesis is linked with some problems, concerning the issue of its verification. Therefore the author proposes to consider a neutral thesis proclaiming that nature is amathematical. Then we avoid strong assumptions concerning the structure of the world and better understand not only the successes but also failures of mathematical methods. Besides we gain a new view of the issue of efficacy of mathematical methods in natural sciences.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.