Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Candida albicans is the most common cause of fungal infections worldwide. Invasive candidiasis comprises candidemia and deep-seated candidiasis. Most yeast invasive infections are endogenous with a high mortality. Pathogenesis of candidiasis depends on avoiding host immune responses, as well as the virulence factors of the fungus enabling colonization and invasion of tissues. Adequate source control and antifungal therapy administered within a short time is critical to get a better prognosis. The emergence of drug resistance and the side effects of currently available antifungals are becoming the major problem in the management of Candida spp. infection.
EN
Candida albicans is the most common cause of fungal infections worldwide. Non-albicans Candida species play an important role in vulvovaginal candidiasis and invasive infections. Most cases of infections are endogenous. In case of patients with immune disorders this opportunistic pathogen causes both surface, systemic infections, and candidemia. Symptoms depend on the area affected. Candidiasis are treated with antimycotics; these include clotrimazole, nystatin, fluconazole, voriconazole, amphotericin B, and echinocandins. The emergence of drug resistance and the side effects of currently available antifungals are becoming a major problem in the management of Candida spp. infection.
EN
Panax quinquefolium L., belonging to the Araliaceae family, along with P. ginseng is one of the well-known species of ginseng. Multidirectional pharmacological action of this plant is attributed to triterpene saponins called ginsenosides. Pharmacopoeial raw material are roots obtained from the field crops which are time-consuming and require expensive agrotechnical procedures. Therefore, the new sources of ginseng biomass are sought such as in vitro suspension cultures. P. quinquefolium L. cell cultures, treated with the elicitation of methyl jasmonate (MJ) in concentration 50 and 250 μmol L-1, synthesize more ginsenosides than control cultures. The highest increase (2.2-fold) of all examined compounds was noted using 250 μmol L-1 MJ. In this condition, the predominantly quantitative metabolite was Rb1 ginsenoside belonging to protopanaxadiol derivatives.
EN
Plant suspension cultures are described as a source for the acquisition of medicinal secondary metabolites which in the future may become an alternative to traditional raw materials. This study demonstrates that the cell cultures of one of the ginseng species – Panax quinquefolium L. synthesize ginsenosides, which are triterpene saponins having a multidirectional pharmacological effects. Tested suspension cultures were run on a small scale in the shake flasksand in scale up of the process in a 10-liter stirred tank. In the shake flasks,the highest biomass yield (2.28 gl-1 for dry and 33.99 gl-1 for fresh weight) was reached on day 30 of culture, and the highest content of saponins (2.66 mg g -1 dw) was determined on day 28 of culture. In the bioreactor, nearly 2.67 and 3-fold increase of respectively dry and fresh biomass was recorded in relation to the inoculum. Large-scale cultures synthesized protopanaxatriol derivatives such as Rg1 and Re ginsenosides, however, no saponins belonging to the protopanaxadiol derivatives were reported.
EN
Escherichia coli is a Gram-negative, facultatively anaerobic, rod-shaped, coliform bacterium, which is a primary cause of urinary tract infections. Resistance to antibiotics has become a particular problem in recent decades. Consequently, there is an unmet need for new therapeutic options. It has been observed that essential oils have bactericidal effects. The antimicrobial susceptibility testing for Escherichia coli isolates obtained from urine of patients with urinary tract infections was determined via disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST, 2015). Essential oil from clove – Syzygium aromaticum (L.) Merill et L.M. (Myrtaceae) was analyzed by GC-FID-MS. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were detected by using the micro-dilution broth method. Escherichia coli clinical isolates are characterized by high resistance to ampicillin, amoxicillin with clavulanic acid, norfloxacin, trimethoprim/sulfamethoxazole, tetracycline, tobramycin and ticarcillin. Clove oil possesses strong inhibiting and killing properties against E. coli isolates, among them the ones resistant to recommended antibiotics. The results of this study highlight the need for testing the efficacy of new agents to inactivate bacteria in clinical settings.
EN
The process of wound healing consists of the following phases: inflammation, proliferation, remodeling. Non-steroidal antiinflammatory drugs may be important in this process, especially in a stage called angiogenesis. For this reason, it was decided to investigate the effect of selective COX-2 (cyclooxygenase 2) inhibitor (NS-398) on the proliferation of endothelial cells and their ability to secrete bFGF (fibroblast growth factor) for vascular endothelial cells (HMEC-1). For determination of the secretion of bFGF in a cell line HMEC-1 immunosorbent ELISA assays were used. In turn, the cell proliferation assay was performed using the MTT method. Using MTT method, it was found that NS-398 at 10 μM did not affect cell viability. Whereas selective COX-2 inhibitor at 100 μM decreased cell viability in a statistically significant manner and inhibited the proliferative effect of 100 μg/mL LPS at concentrations of 10 and 100 μM. In the further step, application of NS-398 (10 and 100 μM) with LPS (100 μg/mL; inflammatory environment) reduced the secretion of bFGF in a statistically significant manner. The investigations showed that NS-398 has an antiangiogenic effect which is based on reducing the proliferation of vascular endothelial cells and inhibiting the secretion of bFGF- factor responsible for angiogenesis during wound healing.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.