This paper presents an agent‐based model of banking sector, which includes three kinds of heterogenous agents – households, borrowers and banks. Households provide funds to the banking sector via deposits and are changing their bank of choice stochastically. Borrowers are main source of demand for liquidity in this system, which they utilize for a risky undertaking, that may not succeed, thus defaulting on a loan. And finally banks act as an intermediary between two previous agents and manage their simple balance sheet. Agents interact with each other, establishing a time‐varying equilibrium, that is able to receive an endogenous macroeconomic shock and return to the equilibrium, which may not be in the same place or may exhibit different characteristics depending on type of the shock. The simulation introduces shocks to the three variables, namely minimal reserve ratio, probability of default and capital adequacy ratio. The work also compares drawbacks and advantages of agent‐based models to the commonly used equation‐based models, such as dynamic stochastic general equilibrium models.
The main purpose of this article is to apply machine learning model based on ensemble of gradient boosted decision trees to forecast direction of share prices of Bank Handlowy S.A listed on WSE. In the introduction, the author presented the context of machine learning and its application in forecasting stock prices. Afterwards, the author describes the process of building classification model which uses XGboost framework from data preprocessing to model evaluation. The input features of the model were technical analysis indicators, like stochastic oscillators or moving averages. Output of the model was a direction of stock price after one week. The accuracy of the model based on testing dataset is 72%. The author also performed a simulation, based on the model. The simulation was made with the Monte Carlo method which stochastic process had a Laplace distribution. During interpretation, at the end, the author pointed limitations of model and algorithmic trading strategy evaluation techniques based on backtest.
PL
Celem niniejszego artykułu jest wykorzystanie modelu z dziedziny uczenia maszynowego opartego na algorytmie zespołu wzmocnionych gradientowo drzew decyzyjnych do prognozowania kierunku zmian kursu akcji Banku Handlowego S.A. notowanego na GPW. We wstępie został przedstawiony kontekst uczenia maszynowego oraz wykorzystania go do prognozowania cen akcji. Następnie, przedstawiono proces tworzenia modelu klasyfikacyjnego wykorzystujący strukturę XGboost od etapu przetwarzania danych do jego ewaluacji. Danymi wejściowymi modelu były wskaźniki wykorzystywane w analizie technicznej, m.in. oscylatory stochastyczne oraz średnie ruchome, natomiast danymi wyjściowymi były kierunki zmian kursu na przestrzeni następnego tygodnia. Skuteczność modelu na danych testowych wyniosła 72%. Na końcu przeprowadzono symulacje portfela inwestycyjnego, podejmującego decyzje o transakcjach na podstawie wcześniej stworzonego modelu, wykorzystując metodę Monte Carlo w której dynamika procesów stochastycznych miała rozkład Laplace’a. Przy interpretacji wyników portfela inwestycyjnego wskazano ograniczenia ewaluacji modelu i strategii inwestycyjnej opartej o backtest.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.