Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 3

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Quantitative models of backward masking appeared almost as soon as computing technology was available to simulate them; and continued interest in masking has lead to the development of new models. Despite this long history, the impact of the models on the field has been limited because they have fundamental shortcomings. This paper discusses these shortcomings and outlines what future quantitative models should look like. It also discusses several issues about modeling and how a model could be used by researchers to better explore masking and other aspects of cognition.
EN
Sequential viewing of 2 orthogonally related gratings produces an afterimage related to the first grating (Vidyasagar, Buzas, Kisyarday, & Eysel, 1999; Francis & Rothmayer, 2003). We investigated how the appearance of the afterimage depended on the relative orientations of the 2 stimulus gratings. We first analyze the theoretical explanation of the appearance of the afterimage that was proposed by Francis and Rothameyer (2003). From the analysis, we show that the model must predict a rapid drop in afterimage occurrence as the gratings deviate from orthogonal. We also show that the model predicts that the shape of the afterimage should always be orthogonal to the second grating. We then report on 2 experiments that test the properties of the model and find that the experimental data are strikingly different from the model predictions. From these discrepancies we identify the key deficits of the current version of the model.
EN
The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.