Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Multi-objective optimization (MOO) considers several objectives to find a feasible set of solutions. Selecting a solution from Pareto frontier (PF) solutions requires further effort. This work proposes a new classification procedure that fits into the analytic hierarchy Process (AHP) to pick the best solution. The method classifies PF solutions using pairwise comparison matrices for each objective. Sectorization is the problem of splitting a region into smaller sectors based on multiple objectives. The efficacy of the proposed method is tested in such problems using our instances and real data from a Portuguese delivery company. A non-dominated sorting genetic algorithm (NSGA-II) is used to obtain PF solutions based on three objectives. The proposed method rapidly selects an appropriate solution. The method was assessed by comparing it with a method based on a weighted composite single-objective function.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.