Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Coastal landforms are located in the interface zone between atmosphere, ocean and land surface systems formed by the geomorphic process of erosion, depositional, and subsidence. Studying the dynamics of coastal landform change is important for tracing the relationship between coastal landform changes and tidal flooding in the coastal areas of Pekalongan, Indonesia. The method of integrating remote sensing data with geographic information system (GIS) techniques has been widely used to monitor and analyze the dynamics of morphology change in coastal landform areas. The purpose of this study is to map the dynamics of landform change in the study area from 1978 to 2017 and to analyze its implications for the impact of tidal flooding. The results of the mapping and change analysis associated with coastal landforms can be classified into four landform types: beach, beach ridge, backswamp and alluvial plain. Changes in coastal morphology and landform topography affected by land subsidence and changes in land use/land cover have contributed to the occurrence of tidal flooding in the study area. Beach ridges perform an important role as natural levees which hold back and prevent the entry of seawater at high tide in coastal areas. A limitation of this study is that, as it focuses only on the physical aspects of coastal landform characteristics for one of the factors causing tidal flooding.
EN
This study presents the information on the dynamics of changes in land use/land cover (LULC) spatially and temporally related to the causes of flooding in the study area. The dynamics of LULC changes have been derived based on the classification of Landsat imagery for the period between 1990 and 2016. Terrain surface classification (TSC) was proposed as a micro-landform classification approach in this study to create flood hazard assessment and mapping that was produced based on the integration of TSC with a probability map for flood inundation, and flood depth information derived from field observation. TSC as the micro-landform classification approach was derived from SRTM30 DEM data. Multi-temporal Sentinel-1 data were used to construct a pattern of historical inundation or past flooding in the study area and  also to produce the flood probability map. The results of the study indicate that the proposed flood hazard mapping (FHM) from the TSC as a micro-landform classification approach has the same pattern with the results of the integration of historical inundation or previous floods, as well as field investigations in the study area. This research will remain an important benchmark for planners, policymakers and  researchers regarding spatial planning in the study area. In addition, the results can provide important input for sustainable land use plans and strategies for mitigating flood hazards.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.