Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In a recent paper, we have shown that the class of Boolean contact algebras (BCAs) has the hereditary property, the joint embedding property and the amalgamation property. By Fraïssé’s theorem, this shows that there is a unique countable homogeneous BCA. This paper investigates this algebra and the relation algebra generated by its contact relation. We first show that the algebra can be partitioned into four sets {0}, {1}, K, and L, which are the only orbits of the group of base automorphisms of the algebra, and then show that the contact relation algebra of this algebra is finite, which is the first non-trivial extensional BCA we know which has this property.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.