Many factors play an important role in prediction of infertility treatment outcome (for example, female age and quality of oocytes or embryos are the most important prognostic factors concerning positive IVF outcome). The purpose of this study was to identify a set of variables that could fulfill criteria for prediction of pregnancy in IVF patients through the application of data mining – using the discriminant analysis method. The principle of this method is to establish a set of rules that allows one to place multi-dimensional objects into one of two analyzed groups (pregnant or not pregnant). Six hundred and ten IVF cycles were included in the analysis and the following variables were taken into consideration: female age, number and quality of retrieved oocytes, number and quality of embryos, number of transferred embryos, and outcome of treatment. Discriminant analysis allowed for the creation of a model with a 51.22% correctness of prediction to achieve pregnancy during IVF treatment and with 74.07% correctly predicted failure of pregnancy. Therefore, the created model is more suitable for the prediction of a negative outcome (lack of pregnancy) during IVF treatment and offers an option for adjustments to be made during infertility treatment.
Intrauterine insemination (IUI) is one of many treatments provided to infertility patients. Many factors such as, but not limited to, quality of semen, the age of a woman, and reproductive hormone levels contribute to infertility. Therefore, the aim of our study is to establish a statistical probability concerning the prediction of which groups of patients have a very good or poor prognosis for pregnancy after IUI insemination. For that purpose, we compare the results of two analyses: Cluster Analysis and Kohonen Neural Networks. The k-means algorithm from the clustering methods was the best to use for selecting patients with a good prognosis but the Kohonen Neural Networks was better for selecting groups of patients with the lowest chances for pregnancy.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.