Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
W ostatnich latach wiele uwagi poświęca się analizie korelacji kanonicznych dla danych reprezentowanych przez funkcje lub krzywe. Takie dane są nazywane w literaturze danymi funkcjonalnymi (Ramsay i Silverman, 2005) i są obszarem wielu zainteresowań badawczych. Przykłady danych funkcjonalnych można znaleźć w wielu praktycznych zastosowaniach, takich jak medycyna, ekonomia, meteorologia i wiele innych. Niestety wielowymiarowe metody korelacji kanonicznych nie mogą być bezpośrednio zastosowane do danych funkcjonalnych, z uwagi na wymiar i trudności związane z uwzględnieniem korelacji i kolejności danych funkcjonalnych. Problem konstrukcji korelacji i zmiennych kanonicznych dla danych funkcjonalnych został zapoczątkowany przez Leurgansa i in. (1993), a następnie rozwinięty przez Ramsaya i Silvermana (2005). W tym artykule proponujemy nową metodę konstrukcji korelacji i zmiennych kanonicznych dla danych funkcjonalnych.
EN
Canonical correlation methods for data representing functions or curves have received much attention in recent years. Such data, known in the literature as functional data (Ramsay and Silverman, 2005), has been the subject of much recent research interest. Examples of functional data can be found in several application domains, such as medicine, economics, meteorology and many others. Unfortunately, the multivariate data canonical correlation methods cannot be used directly for functional data, because of the problem of dimensionality and difficulty in taking into account the correlation and order of functional data. The problem of constructing canonical correlations and canonical variables for functional data was addressed by Leurgans et al. (1993), and further developments were made by Ramsay and Silverman (2005). In this paper we propose a new method of constructing canonical correlations and canonical variables for functional data.
EN
This paper considers new measures of mutual dependence between multiple multivariate random processes representing multidimensional functional data. In the case of two processes, the extension of functional distance correlation is used by selecting appropriate weight function in the weighted distance between characteristic functions of joint and marginal distributions. For multiple random processes, two measures are sums of squared measures for pairwise dependence. The dependence measures are zero if and only if the random processes are mutually independent. This property is used to construct permutation tests for mutual independence of random processes. The finite sample properties of these tests are investigated in simulation studies. The use of the tests and the results of simulation studies are illustrated with an example based on real data.
PL
W niniejszym artykule rozważany jest problem dwuetykietowej klasyfikacji wielowymiarowych danych funkcjonalnych. Zaproponowane rozwiązanie tego problemu oparto na technikach regresyjnych i modelu regresji logistycznej dla danych funkcjonalnych. Model ten został przekształcony do szczególnego modelu regresji logistycznej za pomocą rozwinięcia (będących funkcjami) współczynników regresji i zmiennych objaśniających w bazie funkcyjnej. Na podstawie tego modelu skonstruowana została reguła klasyfikacyjna. W przypadku występowania obserwacji odstających rozważane są również metody odpornej estymacji nieznanych parametrów. Eksperymenty numeryczne sugerują, że proponowane metody mogą z powodzeniem być wykorzystane w praktycznych zagadnieniach.
EN
In this paper, the binary classification problem of multi‑dimensional functional data is considered. To solve this problem a regression technique based on functional logistic regression model is used. This model is re‑expressed as a particular logistic regression model by using the basis expansions of functional coefficients and explanatory variables. Based on re‑expressed model, a classification rule is proposed. To handle with outlying observations, robust methods of estimation of unknown parameters are also considered. Numerical experiments suggest that the proposed methods may behave satisfactory in practice.
EN
The paper presents an estimation of life standard diversity for residents of Polish voivodships in 2003–2013. The principal component analysis was applied for multidimensional functional data and the dendrite method was used for cluster analysis. These methods made it possible to isolate relatively homogeneous groups of voivodships that had similar values of characteristics under consideration, for the whole period at issue.
PL
W artykule przedstawiono ocenę zróżnicowania poziomu życia mieszkańców województw w latach 2003–2013. Do oceny zastosowano analizę składowych głównych dla wielowymiarowych danych funkcjonalnych oraz dendrytową analizę skupień. Metody te pozwoliły na wyodrębnienie względnie jednorodnych grup województw o zbliżonym poziomie rozpatrywanych cech dla całego rozpatrywanego okresu łącznie.
EN
Schölkopf, Smola and Müller (1998) have proposed a nonlinear principal component analysis (NPCA) for fixed vector data. In this paper, we propose an extension of the aforementioned analysis to temporal‑spatial data and weighted temporal‑spatial data. To illustrate the proposed theory, data describing the condition of state of higher education in 16 Polish voivodships in the years 2002–2016 are used.
PL
Schölkopf, Smola i Müller (1998) zaproponowali analizę nieliniowych składowych głównych (NPCA) dla ustalonych danych wektorowych. Niniejszy artykuł zawiera rozszerzenie tej metody na dane czasowo‑przestrzenne oraz czasowo‑przestrzenne geograficznie ważone. Każdy obiekt jest scharakteryzowany za pomocą macierzy Xi, rozmiaru T × p, zawierającej wartości p cech zaobserwowanych w T momentach czasowych, i = 1, …, n. Macierze te są przekształcane nieliniowo do przestrzeni Hilberta i budowana jest scentrowana macierz jądrowa. Ostatecznie macierz ta jest podstawą konstrukcji nieliniowych składowych głównych. W przypadku danych geograficznie ważonych macierz Xizostaje zastąpiona macierzą wiXi, gdzie wijest dodatnią wagą geograficzną związaną z i‑tym miejscem obserwacji, i = 1, …, n. Teoria zilustrowana jest przykładem dotyczącym stanu szkolnictwa wyższego w 16 polskich województwach, notowanego w latach 2002–2016.
EN
A new variable selection method is considered in the setting of classification with multivariate functional data (Ramsay and Silverman (2005)). The variable selection is a dimensionality reduction method which leads to replace the whole vector process, with a low-dimensional vector still giving a comparable classification error. Various classifiers appropriate for functional data are used. The proposed variable selection method is based on functional distance covariance (dCov) given by Székely and Rizzo (2009, 2012) and the Hilbert-Schmidt Independent Criterion (HSIC) given by Gretton et al. (2005). This method is a modification of the procedure given by Kong et al. (2015). The proposed methodology is illustrated with a real data example.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.