Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 5

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
LogForum
|
2017
|
vol. 13
|
issue 3
301-311
EN
Background: In terms of Lean Six Sigma, the whole process focuses on clients and their needs. Existence of a client generates the supply of companies. Extended customization has a negative impact for a structure of the production system. Dynamics of changes and no predictability of system’s state in time t+1 lead to increase of the operational costs. It particularly affects those companies which are producing goods using MTO (make – to – order) method in short series. The goal of this article is to establish a mathematical model defining how the structure of a production system is subject to change depending on the volume of the production batch for a production system in accordance with MTO. Furthermore pilot calculations have been presented which determine the probability value, how subsequent random variables are contained within three standard deviations (±3δ) from the determined expected value (ET) for the entire production structure. Months of analysis and research on introducing selected lean toolbox components to a polish company from the small and medium enterprises sector resulted in the models presented in the article. The production structure of the discussed actual facility is complex and is of converged nature in accordance with MTO, while the final products are manufactured in short production series with a relatively wide customization options. Materials and results: Wrought models consider theories of Klir and Maserovicz [Mesarovic 1964] and also theory of mass operation (one of the probability areas). In the article there are results from two models which are fundamental in defining problems in logistics engineering and production in scientific research. Important attribute of presented models is a fact that they consider relations between variables in a structure of consecutive processes and also consider relations between a size of production party and a real object. Presented models are not only theoretical coverage but also consider real relations between objects. Real productive object specialized in producing cooling devices destined to store hematogenous objects, plasma and cryoprecipitate has been analyzed. Those devices have very strict quality requirements (consistent with ISO 13485 and CE0434 in accordance with Directive 93/42/EEC). In the article there is a presentation of three models which indicates two different functions of production time for production party of 2 ≤ k ≤ 30 and k > 30 items. In the following model there are a few different parameters of the production system: variable parameters of processes’ times which depend on a kind of half-finished product, dependency of time needed to produce an item, size of a production party and also dependency of operational times and implemented technology. Conclusions: It is important to customize tools to individual attributes of a system whilst implementing changes in real objects. One change can be effective in one organization and not necessarily in the other. Wrought model is a first of the steps in building a scheme necessary to validate a real object in time t+1. On the next step those theories will be implemented in IT tool environment of R Studio or Witness System Simulation Modeling to conduct statistical analysis based on historical data.
PL
Wstęp: Koncepcja Lean Six Sigma skupia się na kliencie i jego potrzebach. Istnienie potrzeb klientów generuje podaż przedsiębiorstw. Przedsiębiorstwa produkujące zgodnie z MTO (make-to-order) muszą charakteryzować się dużą elastycznością i dostosowaniem do dynamicznych zmian otoczenia (w tym zmian zapotrzebowania klienta). Daleko idąca customiazacja ma negatywny wpływ na strukturę systemu produkcyjnego. Występująca dynamika zmian, brak przewidywalności stanu systemu w chwili t+1 skutkuje zwiększeniem kosztów operacyjnych. W szczególności dotyczy to tych przedsiębiorstw, które produkują zróżnicowany asortyment, w krótkich seriach produkcyjnych. Celem naukowym artykułu jest opracowanie modelu matematycznego określającego poziom zmienności struktury systemu produkcyjnego w zależności od wielkości partii produkcyjnej dla układu wytwórczego zgodnego z MTO. Ponadto w artykule zaprezentowane zostały pilotażowe obliczenia określające wartość prawdopodobieństwa, jak występujące zmienne losowe mieszczą się w obszarze trzech odchyleń standardowych (±3δ) od wyznaczonej wartości oczekiwanej (ET) dla całej struktury produkcyjnej. Zaprezentowane modele są rezultatem analiz i wniosków wielomiesięcznych prac związanych z wdrażaniem wybranych narzędzi lean toolbox w jednym z polskich przedsiębiorstw sektora MSP. Struktura produkcyjna rozpatrywanego obiektu rzeczywistego jest złożona i ma charakter konwergentny, zgodny MTO przy czym wyroby finalne wytwarzane są w krótkich seriach produkcyjnych przy względnie bardzo wysokiej customizacji produktów. Materiały i wyniki: Opracowane modele uwzględniają rozważania ujęcia systemowego zgodnie z ogólną teorią systemów według Klira oraz Meserovicza [Mesarovic 1964] jak również teorię obsługi masowej będących jednym z działów teorii prawdopodobieństwa. W artykule przedstawione są dwa modele, które stanowią podstawowy argument w definiowaniu problemów z zakresu inżynierii logistyki [Michlowicz et al. 2015] i produkcji w badaniach naukowych. Ważnym atrybutem przedstawionych modeli jest fakt, iż uwzględniają one zależności występujących zmiennych losowych w strukturze wykonywania następujących po sobie poszczególnych procesów oraz uwzględniają zależności wielkości partii produkcyjnej dla obiektu rzeczywistego. Przedstawione modele nie są jedynie opracowaniem teoretycznym ale uwzględniają zależności rzeczywiste i empiryczne. Rozważaniom został poddany rzeczywisty obiekt wytwórczy, specjalizujący się w produkcji urządzeń chłodniczych przeznaczonych do przechowywania preparatów krwiopochodnych oraz osocza i krioprecypitatu. Urządzenia te posiadają bardzo restrykcyjne wymogi jakościowe, zgodne z ISO 13485 (Systemy Zarządzania Jakością dla Wyrobów Medycznych) oraz znakiem CE0434 (dla urządzeń spełniających warunki Dyrektywy 93/42/EEC). W artykule zostały przedstawione dwa modele wyznaczające funkcję czasów produkcji (VA – Value Added) dla przypadku gdy partia produkcyjna wynosi sztuk tego samego wyrobu oraz gdy partia produkcyjna wynosi sztuk. W opracowanym modelu zostały uwzględnione następujące parametry systemu produkcyjnego: zmienne parametry czasów trwania procesów zależne od rodzaju wytwarzanego półproduktu, zależność wartości czasów trwania od wielkości partii produkcyjnej, zależność czasów operacji od zaimplementowanej technologii. Wnioski: W opracowywaniu rozwiązań, które implementowane są w obiektach rzeczywistych ważne jest dostosowanie narzędzi do indywidualnych cech usprawnianego systemu. To co jest korzystne w jednej organizacji nie zawsze jest efektywne w innym przedsiębiorstwie. Opracowany model (uwzględniający zależności realizujących jedynie zlecenia w tzw.: produkcji jednostkowej) jest pierwszym z etapów budowy układu służącego do walidacji rzeczywistego obiektu dla chwili t+1. W kolejnym etapie przeprowadzone rozważania zostaną zaimplementowane w środowisku narzędzia informatycznego R Studio w celu przeprowadzenia analiz statystycznych na podstawie danych historycznych.
EN
Product customization and dynamically changing customer requirements cause multiple versions of the same product to be created with minute modifications, e.g.: different colour, material used, accessories, etc. Adapting to changing tendencies determines the manufacturer`s competitiveness. This article presents the analysis of the flexibility of a complex convergent production structure. The analysis has been conducted using the EPE (Every Part Every…) indicator. To maintain the accuracy of the system`s evaluation, the flexibility determining algorithm has been adjusted to the analyzed cell structure. A flexibility indicator EPE shows the lowest possible frequency at which the rotating production of a batch is repeated. In practice, it informs us after what time we may manufacture the same lot of goods again, taking into account the time necessary for delivering accepted orders. The conclusions from the conducted analyses helped to develop strategic development plans which assumed increasing the volume of the manufactured assortment both in number and variety.
3
100%
LogForum
|
2020
|
vol. 16
|
issue 3
333-345
EN
Background: The presented research problem concerns the operational (executive) level and does not include tactical or strategic solutions. The described algorithm concerns the determination of the priority number of objects that are the equipment of any considered production system. The algorithm takes into account the states of work in the external and internal areas of the evaluated system. The analysed characteristics mainly include: values of work levels in the supply chain (to and from the enterprise) and values of system work levels within the company in the area of continuity of the processed material flow and failure levels of technological equipment. The algorithm of the object priority evaluation takes into account the existing synergy of a single element of the system with the whole system. Methods: The presented method of assessing priorities enables determination of critical elements of a complex system. The evaluation is carried out in a three-dimensional system. It takes into account machine failure, the operation of processes in the area of the analysed manufacturing system but also the levels of operation of supply systems (supply chains). The presented method of determining priorities requires adapting the assessment methodology to the individual characteristics of the test object. For this reason, the analysis includes, among others: the type of the system, its structural and functional complexity, complexity of interoperability and the size of material flow streams and their frequency. Results: The developed algorithm was verified on a selected example of a production system. Due to the complexity of the presented algorithm, the article presents results for a system that is characterized by a relatively high level of process flexibility and has a large number of technological processes. The article presents the values of indicators that were calculated for individual modules Conclusions: The presented algorithm is a general approach to the evaluation of the elementary objects of the system, while taking into account the existing synergy between the other elements of the entire system. In the next stages of the research, the authors will develop algorithms for various production systems (convergent and divergent), for different manufacturing specifications (objective and technological) and for different levels of process flexibility values.
PL
Wstęp: W pełni efektywne zarządzanie i organizacja dowolnego systemu produkcyjnego zakłada: zero zapasów w całym łańcuchu dostaw oraz zero postojów spowodowanych np.: oczekiwaniem na przetwarzany materiał bądź losowo występującymi awariami urządzeń wyposażenia technicznego. W wielu przedsiębiorstwach elementarne ograniczanie strat z grup: muri, mura i muda, przynosi doraźne efekty jedynie w usprawnianym obszarze. Należy pamiętać, że system wytwórczy zgodnie z teorią systemów złożonych jest organizacją, w której elementy składowe systemu występują względem siebie w ścisłej korelacji. Każdorazowa zmiana będąca obszarowym usprawnieniem systemu, determinuje również zmiany w innych (nie usprawnianych) obszarach. Stąd konieczne jest stosowanie wieloaspektowego ujęcia z jednoczesnym uwzględnieniem horyzontu czasowego i przestrzennego. Materiały i rezultaty: Przedstawiony w artykule problem badawczy skupia się na obszarze poziomu operacyjnego (wykonawczego) i nie dotyczy rozwiązań taktycznych ani strategicznych. Przedstawiony w artykule algorytm kształtowania liczby priorytetowej obiektów, będących wyposażeniem dowolnie rozważanego systemu produkcyjnego, uwzględnia stany pracy w obszarach zewnętrznym i wewnętrznym analizowanego układu. Mianowicie uwzględnione zostały: wartości poziomów pracy w łańcuchu dostaw (do i z przedsiębiorstwa) oraz wartości poziomów pracy układu wewnątrz przedsiębiorstwa w obszarze ciągłości przepływu przetwarzanego materiału oraz poziomów awaryjności urządzeń wyposażenia technologicznego. Zaprezentowany algorytm oceny priorytetów obiektów obejmuje kompleksowe ujęcie występującej synergii pojedynczego elementu systemu z całym układem (z uwzględnieniem wpływów czasu i miejsca). Opracowany algorytm poddano weryfikacji na wybranym przykładzie systemu produkcyjnego. Zaprezentowana metoda kształtowania priorytetów wymaga dostosowania metodyki oceny do indywidulanych cech rozważanego obiektu , przy każdorazowym jej zastosowaniu. Z tego też względu analiza uwzględnia między innymi: typ i rodzaj systemu, jego złożoności w obszarze strukturalnej, funkcjonalnej i złożoności współdziałania oraz wielkości strumieni przepływu materiałów i ich częstotliwość. Przedstawiona w artykule metoda oceny priorytetów, umożliwia wyznaczenie krytycznych elementów złożonego systemu. Ocena kształtowana jest w układzie trójwymiarowym z uwzględnieniem awarii maszyn, procesów realizacji w obszarze analizowanego systemu wytwórczego, ale również z uwzględnieniem poziomów pracy systemów zasilających (łańcuchów dostaw). Ze względów na złożoność przedstawionego algorytmu, w artykule zaprezentowano wyniki dla układu cechującego się względnie wysokim poziomem elastyczności procesowej oraz posiadającym względnie dużą liczbę procesów technologicznych. Ważnym parametrem analizowanego systemu jest wysoki poziom jakości realizacji procesów osiągając skumulowaną jakość dla wytworzonych produktów ponad cztery sigma w kryterium oceny zgodnym z metodą Six Sigma. Ponadto układ cechuje się względnie dużą zmiennością asortymentową materiałów wejściowych, co w rezultacie determinuje wielką liczbę łańcuchów dostaw na wejściu do systemu produkcyjnego. Ponadto specyfika rozpatrywanej branży jest układem wykazującym konkurencyjność wytwarzanych wyrobów finalnych stąd występuje wysoki poziom dostosowania produktów do oczekiwań klientów przekładający się na elastyczność przedsiębiorstwa. Wnioski: Opracowany algorytm uwzględnia rozważania ujęcia systemowego zgodnie z ogólną teorią systemów według Klira oraz Meserovicza. Zaprezentowany algorytm jest ogólnym ujęciem oceny elementarnych obiektów systemu z jednoczesnym uwzględnieniem występującej synergii między pozostałymi elementami całego układu. W kolejnych etapach badań zostaną opracowane algorytmy dla różnych układów produkcyjnych (konwergentnych i dywergentnych), o różnej specyfikacji wytwórczej (przedmiotowej i technologicznej) oraz wykazujących różne poziomy wartości elastyczności procesowej. Dla opracowanych algorytmów zostanie przeprowadzona walidacja i porównanie modeli dla danych empirycznych zgromadzonych w rzeczywistych obiektach wytwórczych.
EN
Food sector is omnipresent in the modern world. It plays a major role in business, and is determined, above all, by lower prices and high quality. Products must be frequently provided in stores. Customers have great expectations in terms of the delivery and availability. Most important are short-term orders realisation and flexible services. The main aim of the paper is to consider two different distribution systems. The reason for this consideration is to identify which of the distribution systems is more effective.
EN
In the systemic approach, a production company is a complex system of objects and relations between the objects, as well as between the system and its surroundings. The large number of variables and company performance assessment indicators result in the constant search for the methods of formalising the mutual dependencies. The discipline which, through the integration of multiple processes, enables the discovery of practical solutions is logistics engineering. In Poland, the term is not very common, while in the USA (for example), logistics engineering – taking advantage of mathematical methods and cutting edge science, is a widely used tool supporting the everyday business activities of companies. The article describes primary tasks of logistics engineering in relation to production companies. Furthermore, original algorithms for the improvements of company productivity are presented.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.