Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 4

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Publication available in full text mode
Content available

THE HOAX OF OCEAN ACIDIFICATION

100%
EN
A widespread alarm is sweeping the world at present about the ill effects of man-made increases in carbon dioxide (CO2 ) production. One aspect is that it may cause the ocean to become acid, and dissolve the carbonate skeletons of many living things including shellfish and corals. However, the oceans are not acid, never have been in geological history, and cannot become acid in the future. Changes in atmospheric CO2 cannot produce an acid ocean. Marine life depends on CO2 , and some plants and animals fix it as limestone. Over geological time enormous amounts of CO2 have been sequestered by living things, and today there is far more CO2 in limestones than in the atmosphere or ocean. Carbon dioxide in seawater does not dissolve coral reefs, but is essential to their survival.
EN
Over the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1 and −0.00007 mm yr−2 respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.
EN
The Atlantic Meridional Overturning Circulation (AMOC) describes the northward flow of warm, salty water in the upper layers, and the southward flow of colder water in the deep Atlantic layers. AMOC strength estimates at 41°N latitude based on satellite sea surface height (SSH), and ARGO ocean temperature, salinity and velocity, and finally the difference in between the absolute mean sea levels (MSL) of the tide gauges of The Battery, New York, 40.7°N latitude, and Brest, 48.3°N latitude. Results suggest that the AMOC has been minimally reducing but with a positive acceleration since 2002, has been marginally increasing but with a negative acceleration since 1993, and has not been reducing but only oscillating with clear periodicities up 18 years, 27 years and about 60 years since 1856.
EN
Boers (2021) wrote that, in the last century, the Atlantic Meridional Overturning Circulation (AMOC) may have evolved from relatively stable conditions to a point close to a critical transition. The claim is based on different AMOC indices, based on observational sea-surface temperature and salinity data from across the Atlantic Ocean basin. Boers’ conclusions (2021) are not based on systematic observations spanning the last and this century, but on subjective reconstructions of sea surface temperature and salinity, as accurate sea-surface and temperature data are only available over the last few decades. Additionally, the AMOC strength does not only correlate to sea surface temperature and salinity data. His as-sumption that the strength of the AMOC depends on poorly described sea-surface temperature and salinity only is not substantiated. The difficulties of estimating the sea surface temperature (SST) are highlighted in Chan et al. (2019). Even more difficult are the estimations of salinity.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.