This article presents downside risk measures such as: Value-at-Risk - VaR and Conditional Value-at-Risk - CVaR. We establish them with three of the known methods. The electric energy is an article of real tame, which we can not store up and this influences on changes of price. The downside risk measures are more effective than the measures of volatility for estimate risk on electric energy market. The aim this article is the choice of VaR and CVaR methods, that are the most effective for future risk on the Polish energy market. In this investigation we use the logarithmic rate of return of prices from the Polish Power Exchange, Balance Market (BM) from October to December 2002 and their simulation distributions.
PL
Podejmując decyzje związane z przyszłością, podejmujemy ryzyko. Ocena ryzyka jest oceną subiektywną i w głównej mierze zależy od preferencji inwestorów. Niemniej jednak, aby ocenić ewentualne przyszłe ryzyko, należy go zmierzyć. Jest wiele różnych miar służących do jego pomiaru. W artykule skupiliśmy się nad kwantylowymi miarami zagrożenia Value-at-Risk - VaR oraz Conditional Value-at-Risk - CVaR. Będziemy te miary wyznaczać trzema znanymi metodami. Energia elektryczna jest towarem czasu rzeczywistego, którego się nie magazynuje, co w znacznym stopniu wpływa na kształtowanie się jej cen. Miary najgorszych realizacji spośród możliwych są efektywniejsze w przypadku oszacowania ryzyka na rynku energii niż miary przeciętne. Celem referatu jest wybór takiej spośród metod wyznaczania VaR oraz CVaR, aby najprecyzyjniej oszacować ewentualne przyszłe ryzyko straty na polskim rynku energii. Wyniki badań oparte są na logarytmicznych stopach zwrotu cen zanotowanych na Towarowej Giełdzie Energii oraz Rynku Bilansującym (RB) w okresie od 1 października do końca 2002 r., oraz na symulowanych rozkładach tych stóp zwrotu.
The quadratic form of the sample mean and sample variance was considered. The sample is from normal distribution. The density function of the quadratic form has been derived. The quadratic form can be applied as the test statistic for the hypothesis on expected value and variance of normal distribution. The table with approximated critical values of the test statistic has been derived.
Multivalued random variables and stochastic processes can be use in integral geometry, mathematical economics or stochastic optimization. In the study of multivalued stochastic processes the some clue problem is the question of existing the vector-valued selection processes. Using the methods of selection operators it is possible to show the existence of convergence in distribution selections and stationary selections for multivalued stochastic processes.
PL
Wielowartościowe zmienne losowe i wielowartościowe procesy stochastyczne znajdują zastosowanie w geometrii różniczkowej, w matematycznej ekonomii oraz w zadaniach stochastycznej optymalizacji. W teorii wielowartościowych procesów stochastycznych ważnym problemem jest pytanie o istnienie wektora selektorów procesu stochastycznego. W artykule wykorzystując operatory selekcyjne, pokazujemy zbieżność względem dystrybuant oraz stacjonarność selektora wielowartościowego procesu stochastycznego.
Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę.
EN
Tree-based models are popular a widely used because they are simple, flexible and powerful tools for classification. Unfortunately they are not stable classifiers. Significant improvement of the model stability and prediction accuracy can be obtained by aggregation of multiple classification trees. Proposed methods, i.e. bagging, adaptive bagging, and arcing are based on sampling cases from the training set while boosting uses a system of weights for cases. The result is called committee of trees, an ensemble or a forest. Recent developments in this field showed that randomization (random selection of variables) in aggregated tree-based classifiers leads to consistent models while boosting can overfit. In this paper we discuss optimal parameter values for the method of random selection of variables (RandomForest) for an aggregated tree-based model (i.e. number of trees in the forest and number of variables selected for each split).
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.