Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 4

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  biodegradation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Properties, application and degradation of plastics

100%
EN
The aim of the study was to present the role of polymeric materials in various industries. The article discusses the statistics related to the global production of plastics in the years 1950-2015. The paper presents the properties and application of polymer materials, and also made the characteristics of the processes of degradation of polymers, detailing the processes induced by chemical agents, physical and biological. Attention is paid to the characteristics of the biodegradation process. The work has also raised issues associated with the development of ever-larger amounts of polymer waste.
2
Content available remote

System odbioru kompostowalnych odpadów opakowaniowych

63%
PL
Biodegradacja opakowania oznacza zakończenie jego cyklu życia na skutek całkowitego rozkładu materiału przez mikroorganizmy w wyniku reakcji enzymatycznych przebiegających w określonym czasie. Opakowania przewidziane do przetworzenia w procesach biologicznych (recykling organiczny) muszą podlegać badaniom, które potwierdzą spełnienie wymagań związanych z przydatnością do kompostowania w warunkach przemysłowych. W porównaniu z opakowaniami z tradycyjnych tworzyw sztucznych, podstawową zaletą opakowań wytworzonych z materiałów biodegradowalnych jest możliwość ich zbierania po zużyciu razem z odpadami organicznymi, a następnie poddanie procesowi recyklingu organicznego w instalacjach przemysłowych (kompostowniach lub instalacjach do biometanizacji).
EN
Biodegradation of packaging means the end of its life cycle through complete decomposition of material by microorganisms as a result of enzymatic reaction occurring in a specified period of time. Packaging intended for processing in biological processes (organic recycling) must be subjected to tests which confirm the fulfilment of the requirements related to the suitability for composting in an industrial environment. In comparison with traditional plastic packaging the main advantage of packaging made from biodegradable materials is the possibility of collecting them after use together with organic waste and then recycling organically in industrial installations (or composting plants or installations for biomethanisation).
Medycyna Pracy
|
2020
|
vol. 71
|
issue 6
743-756
EN
Problems arising from the accumulation of plastic waste in the environment have become global. Appeals to stop the usage of disposable drinking straws or plastic cutlery did not come out without reason – 320 million tons of plastic products are produced annually, of which 40% are disposable items. More and more countries and private enterprises are giving up these types of items in favor of their biodegradable substitutes, e.g., cardboard drinking straws. Plastic waste in the environment is subject to a number of physicochemical interactions and biodegradation in which bacteria are involved. By using synthetic waste, they reduce the size of plastic garbage while increasing its dispersion in the environment. Small plastic particles, invisible to the naked eye, are called nanoplastic. Nanoplastic is not inert to living organisms. Due to its size, it is taken up with food by animals and passed on in the trophic chain. The ability to penetrate the body’s barriers through nanoplastic leads to the induction of biological effects with various outcomes. Research studies on the interaction of nanoplastic with living organisms are carried out in many laboratories; however, their number is still a drop in the ocean of the data needed to draw clear-cut conclusions about the impact of nanoplastic on living organisms. There is also no data on the direct exposure to nanoplastic contamination at workplaces, schools and public utilities, standards describing the acceptable concentration of nanoplastic in food products and drinking water, and in vitro tests on nanoparticles other than polystyrene nanoparticles. Complementing the existing data will allow assessing the risks arising from the exposure of organisms to nanoplastic. Med Pr. 2020;71(6):743–56
PL
Problemy wynikające z gromadzenia się w środowisku plastikowych odpadów stały się globalne. Apele o zaprzestanie wykorzystywania jednorazowych słomek do napojów czy plastikowych sztućców nie pojawiły się bez powodu – rocznie produkuje się 320 mln ton wyrobów plastikowych, z których 40% to przedmioty jednorazowego użytku. Coraz więcej państw i prywatnych przedsiębiorstw rezygnuje z przedmiotów plastikowych na rzecz ich biodegradowalnych zamienników, np. tekturowych słomek do napojów. W środowisku plastikowe odpady podlegają wielu oddziaływaniom fizykochemicznym oraz biodegradacji, w której biorą udział bakterie. Bytując na odpadach syntetycznych, powodują zmniejszenie ich rozmiarów i zwiększają ich dyspersję w środowisku. Małe, niewidoczne gołym okiem cząstki plastiku noszą nazwę nanoplastiku. Nanoplastik nie jest obojętny dla organizmów żywych. Z uwagi na swoje rozmiary jest pobierany wraz z pokarmem przez zwierzęta i przekazywany w łańcuchu troficznym. Zdolność nanoplastiku do przenikania barier organizmu indukuje efekty biologiczne o rozmaitych skutkach. Wiele ośrodków prowadzi badania na temat nanoplastiku, jednak ich wyniki wciąż stanowią ułamek danych potrzebnych do jednoznacznego wnioskowania o jego wpływie na organizmy żywe. Brakuje także danych dotyczących bezpośredniego narażenia na zanieczyszczenie nanoplastikiem w miejscach pracy, szkołach i miejscach użyteczności publicznej, norm opisujących dopuszczalne stężenie nanoplastiku w produktach spożywczych i wodzie pitnej oraz badań in vitro na nanocząstkach innych niż polistyrenu. Uzupełnienie dostępnych danych pozwoli obiektywnie ocenić zagrożenia płynące ze strony ekspozycji organizmów na nanoplastik. Med. Pr. 2020;71(6):743–756
EN
The additional artificial elements have been implemented into weak soil to improve and stabilize the structures. The most frequent example is use of geosynthetics materials that increase stability, improve bearing capacity of soil, protect against surface erosion, affect into properties connected with filtration and drainage. The basic methods to protect against erosion of slopes is selected planting of grass and vegetation that prevent surface destruction. The application of biodegradable geotextiles allows to increase the positive impact on local stability of slopes. Advanced geotextiles support the vegetation growth by protection against dewatering. The geotextiles with grass seeds, biomates and fabrics made of natural fibers are frequently used in these applications. The physical, mechanical and hydraulic properties of applied materials should correspond to the purpose of built structure and type of soil. The paper presents results of research of the Maliwatt type nonwovens. The analysis includes: the influence of different type of Maliwatt nonwovens and time of their use on selected physical, mechanical and hydraulic properties of these materials. The research was done by use of biotextile stitched with the Maliwatt technique that is available on the Polish market. The geotextiles were obtained from waste synthetic and natural nonwovens (RKL) with grass seeds, and innovative non-woven fabrics stitched with polyamide yarn (Maliwatt) obtained from low-quality washed sheep wool. The impact of the type of non-woven fabric on the growth of grasses was also analyzed. Research included spreading of 2 types of nonwovens on a natural slope with natural soil cover for 5 months period. All tests were performed in accordance with the applicable harmonized standards.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.