Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  noise-induced hearing loss
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Tinnitus is defi ned as a perception of sound in the absence of an external acoustic stimulus. Several factors are known to infl uence tinnitus, e.g. hearing loss, noise exposure, age, and hypertension. As only certain individuals develop tinnitus in the presence of the above risks and in approximately 50% of cases tinnitus is not attributed to any particular cause, the question arose whether this inter-individual susceptibility to tinnitus could be explained by the infl uence of genetic factors. Objectives: To test the hypothesis that genetic variability in genes of the potassium recycling pathway is associated with increased susceptibility to tinnitus. Materials and Methods: The study group consisted of 626 subjects exposed to occupational noise (128 with tinnitus and 498 without tinnitus). 99 single nucleotide polymorphisms were investigated in 10 genes involved in the potassium recycling pathway in the inner ear, previously selected as putative noise-induced hearing loss (NIHL) candidate genes. Results: Nominally signifi cant associations were obtained for 2 variants in KCNE1 (potassium voltage-gated channel, Isk-related family, member 1) and SLC12A2 (solute carrier family 12, member 2) genes. The first gene contributed to tinnitus that developed independently of hearing loss, while the second one was associated with increased susceptibility to noise-induced hearing loss. Conclusions: Present fi ndings lend support to the notion of potassium recycling pathway genes as possible risk modifi ers of tinnitus in individuals with and without hearing loss. Due to the lack of replication in other independent populations these results should be seen as suggestive.
EN
ObjectivesThe aim of the study was to evaluate the hearing status of operators of low-frequency ultrasonic devices compared to employees exposed to audible noise at a similar A-weighted sound pressure level (SPL) but without ultrasonic components.Material and MethodsStandard pure-tone audiometry, extended high-frequency audiometry (EHFA), transient-evoked otoacoustic emissions (TEOAE), and distortion-product otoacoustic emissions (DPOAE), as well as questionnaire surveys were conducted among 148 subjects, aged 43.1±10.8 years, working as ultrasonic device operators for 18.7±10.6 years. Their exposure to noise within the ultrasonic and audible frequency range was also evaluated. The control group comprised 168 workers, adjusted according to gender, age (±2 years), tenure (±2 years), and the 8-hour daily noise exposure level (LEX,8h) of ±2 dB.ResultsThe ultrasonic device operators and the control group were exposed to audible noise at LEX,8h of 80.8±3.9 dB and 79.1±3.4, respectively. The Polish maximum admissible intensity (MAI) values for audible noise were exceeded in 16.8% of the ultrasonic device operators, while 91.2% of them were exposed to ultrasonic noise at SPL>MAI values. There were no significant differences between the groups in terms of the hearing threshold levels (HTLs) up to 3 kHz, while the ultrasonic device operators exhibited significantly higher (worse) HTLs, as compared to the control group, in the range of 4–14 kHz. The results of the DPOAE and TEOAE testing also indicated worse hearing among the ultrasonic device operators. However, the differences between the groups were more pronounced in the case of EHFA and DPOAEs.ConclusionsThe outcomes of all hearing tests consistently indicated worse hearing among the ultrasonic device operators as compared to the control group. Both EHFA and DPOAE seem to be useful tools for recognizing early signs of hearing loss among ultrasonic device operators.
EN
Objectives The objective of this study was to assess the hearing of employees using communication headsets with regard to their exposure to noise. Material and Methods The study group comprised 213 employees, including 21 workers of the furniture industry, 15 court transcribers and 177 call center operators, aged 19–55 years, working with headsets for a period of up to 25 years. All the participants underwent a standard puretone audiometry, extended high-frequency audiometry (EHFA) as well as transient-evoked otoacoustic emissions (TEOAEs) and distortion-product otoacoustic emissions (DPOAEs). Noise exposure from headsets was evaluated using the microphone in a real ear technique according to PN-EN ISO 11904-1:2008. Results Personal daily noise exposure levels ranged 57–96 dB and exceeded 85 dB only in 1.4% of the call center operators. Forty-two percent of the participants had bilateral normal hearing in the standard frequency range of 250–8000 Hz, and 33% in the extended highfrequency range of 9–16 kHz. It was found that DPOAEs were present bilaterally in 59% of the participants. Reproducibility of TEOAE at >70% and signal-to-noise ratio at >6 was exhibited by 42% and 17% of them, respectively. The 3 subgroups of workers differed in age, gender, noise exposure and type of headsets in use. However, after adjusting for age and gender, significant differences between these subgroups in terms of hearing were mostly visible in EHFA. A significant impact of age, gender, daily noise exposure level and current job tenure on hearing tests results was also noted among the call center operators and the transcribers. The most pronounced were the effects of age and gender, whereas the impact of the daily noise exposure level was less evident. Conclusions It seems that EHFA is useful for recognizing early signs of noise-induced hearing loss among communication headset users. However, further studies are needed before any firm conclusions concerning the risk of hearing impairment due to the use of such devices can be drawn.
EN
Objectives The aim of this study was to assess hearing of music students in relation to their exposure to excessive sounds. Material and Methods Standard pure-tone audiometry (PTA) was performed in 168 music students, aged 22.5±2.5 years. The control group included 67 subjects, non-music students and non-musicians, aged 22.8±3.3 years. Data on the study subjects’ musical experience, instruments in use, time of weekly practice and additional risk factors for noise-induced hearing loss (NIHL) were identified by means of a questionnaire survey. Sound pressure levels produced by various groups of instruments during solo and group playing were also measured and analyzed. The music students’ audiometric hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to the International Organization for Standardization standard ISO 1999:2013. Results It was estimated that the music students were exposed for 27.1±14.3 h/week to sounds at the A-weighted equivalent-continuous sound pressure level of 89.9±6.0 dB. There were no significant differences in HTLs between the music students and the control group in the frequency range of 4000–8000 Hz. Furthermore, in each group HTLs in the frequency range 1000–8000 Hz did not exceed 20 dB HL in 83% of the examined ears. Nevertheless, high frequency notched audiograms typical of the noise-induced hearing loss were found in 13.4% and 9% of the musicians and non-musicians, respectively. The odds ratio (OR) of notching in the music students increased significantly along with higher sound pressure levels (OR = 1.07, 95% confidence interval (CI): 1.014–1.13, p < 0.05). The students’ HTLs were worse (higher) than those of a highly screened non-noise-exposed population. Moreover, their hearing loss was less severe than that expected from sound exposure for frequencies of 3000 Hz and 4000 Hz, and it was more severe in the case of frequency of 6000 Hz. Conclusions The results confirm the need for further studies and development of a hearing conservation program for music students. Int J Occup Med Environ Health 2017;30(1):55–75
EN
Objectives It has been shown that monitoring temporary threshold shift (TTS) after exposure to noise may have a predictive value for susceptibility of developing permanent noise-induced hearing loss. The aim of this study is to present the assumptions of the TTS predictive model after its verification in normal hearing subjects along with demonstrating the usage of this model for the purposes of public health policy. Material and Methods The existing computational predictive TTS models were adapted and validated in a group of 18 bartenders exposed to noise at the workplace. The performance of adapted TTS predictive model was assessed by receiver operating characteristic (ROC) analysis. The demonstration example of the usage of this model for estimating the risk of TTS in general unscreened population after exposure to loud music in discotheque bars or music clubs is provided. Results The adapted TTS predictive model shows a satisfactory agreement in distributions of actual and predicted TTS values and good correlations between these values in examined bartenders measured at 4 kHz, and as a mean at speech frequencies (0.5–4 kHz). An optimal cut-off level for recognizing the TTS events, ca. 75% of young people (aged ca. 35 years) may experience TTS >5 dB, while <10% may exhibit TTS of 15–18 dB. Conclusions The final TTS predictive model proposed in this study needs to be validated in larger groups of subjects exposed to noise. Actual prediction of TTS episodes in general populations may become a helpful tool in creating the hearing protection public health policy. Int J Occup Med Environ Health. 2023;36(1):125–38
EN
Background Noise in entertainment industry often reaches high sound pressure levels. Nevertheless, the risk of hearing loss in this sector is insufficiently recognized. The aim of this study was the assessment of the relationship between noise exposure and temporary threshold shifts (TTS) for people working as bartenders at a variety of entertainment venues. Material and Methods The study comprised a total of 18 bartenders (mean age was 25±7 years old) employed at a music club (N = 8), pub (N = 5) and discotheque (N = 5). Personal dosimeters were used for determining noise levels and frequency characteristics. Hearing was evaluated by pre- (before work) and post-exposure (up to 15 min after the end of work) pure tone audiometry. Hearing tests were carried out for bartenders during 2 or 3 sessions while working on weekends. Results The mean personal noise exposure level normalized to a nominal 8-hour working day was 95 dBA, above 4 times higher than the accepted legal limit. The TTS values (10 dB HL or more) were significant at 4 kHz for both ears for 77% of bartenders. Conclusions People working as bartenders represent a professional group with an increased risk of hearing loss. Raising awareness of this fact and implementing hearing protection programs in this group of workers is urgently needed, in line with the European Commission Directive (EU Directive 2003/10/EC). Med Pr. 2019;70(1):17–25
PL
Wstęp W przemyśle rozrywkowym hałas często osiąga wysokie poziomy ciśnienia akustycznego, jednak ryzyko uszkodzenia słuchu w tym sektorze nie zostało jeszcze dokładnie ocenione. Celem pracy była ocena związku między ekspozycją na wysoki poziom dźwięku a czasowym przesunięciem progu słuchu u osób pracujących na stanowisku barmana w lokalach rozrywkowych. Materiał i metody Badaniem objęto 18 barmanów (średni wiek: 25±7 lat) zatrudnionych w klubie muzycznym (N = 8), pubie (N = 5) i dyskotece (N = 5). Poziomy dźwięków oraz charakterystyka częstotliwościowa hałasu były określane za pomocą dozymetrii indywidualnej. Progi słuchu oceniano za pomocą audiometrii tonalnej przeprowadzanej przed rozpoczęciem dnia pracy oraz bezpośrednio (do 15 min) po jego zakończeniu. Badania słuchu przeprowadzono u barmanów w czasie 2 lub 3 sesji badawczych podczas pracy w weekendy. Uzyskano 92 audiogramy przed- i poekspozycyjne. Wyniki Uśrednione równoważne poziomy dźwięku odniesione do 8-godzinnego dnia pracy w ocenianych 3 lokalach muzycznych wynosiły 95 dBA, przekraczając ponad czterokrotnie dopuszczalne prawnie normy. U 77% badanych osób wykazano przynajmniej w 1 sesji pomiarowej czasowe przesunięcia progów słuchu ≥ 10 dB HL dla częstotliwości 4 kHz. Wnioski Osoby pracujące na stanowisku barmana stanowią grupę zawodową o podwyższonym ryzyku utraty słuchu. Niezbędne jest zwiększanie świadomości tego faktu oraz wdrażanie u tych pracowników programów ochrony słuchu, zgodnie z dyrektywą Komisji Europejskiej (EU 2003/10/WE). Med. Pr. 2019;70(1):17–25
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.