Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  regenerative medicine
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Multipotent mesenchymal stromal cells also known as mesenchymal stem cells according to the signal from the damaged tissue have the ability to differentiate into several types of specialized cells forming tissues of mesodermal origin such as bone, cartilage, tendon, skeletal muscle or adipose tissue. This ability of MSC is used in regenerative medicine. For the clinical and experimental purposes in order to increase the amount of MSC their ability to proliferate in vitro is used. The best-known source of mesenchymal stem cells is the adipose tissue and bone marrow which is the most common source material used for primary culture. This paper presents the next steps of culturing mesenchymal stem cells in vitro.
EN
Pluripotent stem cells are able to differentiate into all types of cells and tissues buliding mammalian organism. During embryo development pluripotent cells are localized in the inner cell mass of blastocyst, which serves as a source of cells for embryo body formation. Pluripotent cells building inner cell mass can be isolated and propagated in vitro as embryonic stem cells (ES cells). Another type of pluripotent stem cells, i.e. induced pluripotent stem cells (iPS cells), is derived as a result of the process called cell reprogramming. Both ES cells and iPS cells serve as a valuable research tool. They could also be used as a potential source of cells for transplantation in regenerative medicine. Derivation of both ES and iPS cells is considered as a real breakthrough in science and medicine, and was distinguished by the Nobel Prize in physiology or medicine. In 2007 Mario Capecchi, Olivier Smithies, and Martin Evans were awarded for development of methods which enabled derivation of ES cells and genetic modification of mice, while in 2012 John Gurdon and Shinya Yamanaka were awarded for research focused on cell reprogramming.
EN
Clusters are important for regional economies and emergent clusters are in a key position, as a means of adding more diversification to the current economic activity by involving new technologies and industries. Science-based industries may be the most promising in this regard since they are encouraged to develop and enhance the economic imaginaries of territories under the umbrella of radical innovations or in the name of broadening the current economic model based on mostly traditional industries. Regenerative medicine (RM) could be an example of these so-called emergent clusters. Regenerative medicine is highly dependent on academic research, which means that local territories must fund the research in this field and, hence, they expect some returns as well. As territories do not typically have existing industries specifically in RM, these industries must emerge or expand from existing ones. Regenerative medicine involves a wide spectrum of different technologies and industries that are likely to form a cluster and benefit from it if successfully developed. The first aim of this paper is to show how some obstacles eventually impede the proper development of these emergent clusters. The second aim is to shed light on how innovations emerge in the cluster and what are the main implications for the territory. In this study, existing literature is used in order to describe the technology market and commercial aspects of the RM sector. Empirically this study is based on the emergent RM cluster in the region of Tampere in Finland. Analysis of 24 conducted interviews helps to contextualize the emergence of the RM cluster in Tampere, where academia is both the booster and the driver of the emergent RM cluster. Commercialization of research in the RM field is one of the goals at the university, even though there are no commercial outcomes yet available. This study contributes to the understanding of emergent cluster development in science-based industries in their embryonic and early stages. Major challenges are pointed out in an emergent cluster that calls for tailor-made socio-economic policies at the meso-level. Tailored policies matter in science-based clusters, and specific sectors in specific stages of development need specific policies in order to become matured clusters.
5
Content available remote

Komórki macierzyste. Część I – wprowadzenie

86%
EN
Stem cells are unique among other cells building organism as they are able both to self-renew and to differentiate into specialized cells. For this reason they play pivotal role during embryonic and fetal development as well as in the growing organisms. In adults stem cells play crucial role in tissue regeneration. Stem cells are classified in terms of their origin (embryonic, fetal, and adult stem cells) or regarding their potential for differentiation into various types of cells (totipotent, pluripotent, multipotent, and unipotent stem cells). The article presents general information about stem cells and serves as an introduction to the next two publications describing pluripotent and adult stem cells, respectively.
PL
Komórki macierzyste mają wyjątkowe właściwości wśród wszystkich komórek organizmu: są zdolne zarówno do samoodnawiania własnej populacji, jak i różnicowania się w wyspecjalizowane komórki. Ze względu na te właściwości komórki macierzyste odgrywają kluczową rolę w procesach rozwoju zarodkowego i płodowego, podczas wzrostu organizmu, a także odpowiadają za regenerację tkanek u dorosłych osobników. Komórki macierzyste klasyfikowane są ze względu na pochodzenie (zarodkowe, płodowe, organizmów dorosłych) lub ze względu na zdolność do przekształcenia się w różne rodzaje komórek (komórki totipotencjalne, pluripotencjalne, multipotencjalne, unipotecjalne). Niniejszy artykuł przedstawia ogólne wiadomości dotyczące komórek macierzystych i stanowi wprowadzenie do kolejnych publikacji, które dotyczyć będą pluripotencjalnych komórek macierzystych oraz komórek macierzystych dorosłych organizmów.
PL
Komórki macierzyste obecne w dorosłych organizmach są w większości komórkami uni- lub multipotencjalnymi. Ich podstawową rolą jest udział w procesach wzrostu i regeneracji tkanek, w których się znajdują. W niniejszym artykule omówiono wybrane rodzaje komórek macierzystych występujących w dorosłych organizmach, między innymi hematopoetyczne komórki macierzyste oraz mezenchymalne komórki macierzyste. Przedstawiono także informacje na temat rzeczywistego i potencjalnego zastosowania komórek macierzystych dorosłych organizmów w nauce i medycynie. Na zakończenie porównano komórki macierzyste organizmów dorosłych z komórkami pluripotencjalnymi, omówionymi w poprzedniej części cyklu.
EN
Most of the stem cells residing in adult organisms are unipotent or multipotent. These cells play the key role in the growth and regeneration of tissues. In the present article we characterized selected types of adult stem cells, inter alia hematopoietic stem cells and mesenchymal stem cells. Next, information about current and potential use of adult stem cells in science and medicine has been discussed. Finally, we summarized information about adult stem cells and pluripotent stem cells that have been described in the previous article.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.