Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2007 | 3 | 1-2 | 327-347

Article title

Metacontrast masking and the cortical representation of surface color: dynamical aspects of edge integration and contrast gain control

Authors

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
This paper reviews recent theoretical and experimental work supporting the idea that brightness is computed in a series of neural stages involving edge integration and contrast gain control. It is proposed here that metacontrast and paracontrast masking occur as byproducts of the dynamical properties of these neural mechanisms. The brightness computation model assumes, more specifically, that early visual neurons in the retina, and cortical areas V1 and V2, encode local edge signals whose magnitudes are proportional to the logarithms of the luminance ratios at luminance edges within the retinal image. These local edge signals give rise to secondary neural lightness and darkness spatial induction signals, which are summed at a later stage of cortical processing to produce a neural representation of surface color, or achromatic color, in the case of the chromatically neutral stimuli considered here. Prior to the spatial summation of these edge-based induction signals, the weights assigned to local edge contrast are adjusted by cortical gain mechanisms involving both lateral interactions between neural edge detectors and top-down attentional control. We have previously constructed and computer-simulated a neural model of achromatic color perception based on these principles and have shown that our model gives a good quantitative account of the results of several brightness matching experiments. Adding to this model the realistic dynamical assumptions that 1) the neurons that encode local contrast exhibit transient firing rate enhancement at the onset of an edge, and 2) that the effects of contrast gain control take time to spread between edges, results in a dynamic model of brightness computation that predicts the existence Broca-Sulzer transient brightness enhancement of the target, Type Bmetacontrast masking, and a form of paracontrast masking in which the target brightness is enhanced when the mask precedes the target in time.

Year

Volume

3

Issue

1-2

Pages

327-347

Physical description

Contributors

  • Howard Hughes Medical Institute and Department of Physiology and Biophysics, University of Washington, Seattle, WA USA

References

  • Alpern, M. (1963). Simultaneous brightness contrast for flashes of different durations.Investigative Ophthalmology, 2, 47-54.[PubMed]
  • Arend, L. E., Buehler, J. N., & Lockhead, G. R. (1971). Difference information in brightness perception.Perception & Psychophysics, 9, 367-370.
  • Arend, L. E., & Spehar, B. (1993a). Lightness, brightness and brightness contrast: I. Illumination variation.Perception & Psychophysics, 54, 446-456.[PubMed]
  • Arend, L. E., & Spehar, B. (1993b). Lightness, brightness and brightness contrast: II. Reflectance variation.Perception & Psychophysics, 54, 457-468.[PubMed]
  • Arrington, K. F. (1994). The temporal dynamics of brightness filling-in.Vision Research, 34, 3371-3387.[PubMed]
  • Bartels, A., & Zeki, S. (2000). The architecture of the colour centre in the human visual brain: new results and a review.European Journal of Neuroscience, 12, 172-190.[PubMed]
  • Becker, M. W., & Anstis, S. (2004). Metacontrast masking is specific to luminance polarity.Vision Research, 44, 2537-2543.[PubMed]
  • Bindman, D., & Chubb, C. (2004a). Brightness assimilation in bullseye displays.Vision Research, 44, 309-319.[PubMed]
  • Bindman, D., & Chubb, C. (2004b). Mechanisms of contrast induction in heterogeneous display.Vision Research, 44, 1601-1613.[PubMed]
  • Bloch, A. M. (1885). Experience sur la vision.C. R. Seances Soc. Biol. Fil., 37, 493-495.
  • Boden, M. (2006).Mind as machine: A history of cognitive science.Oxford, UK: Oxford University Press.
  • Boynton, R. M. (1961). Some temporal factors in vision. In W. A. Rosenblith, (Ed.)Sensory communication(pp. 739-756). New York: Wiley and Sons.
  • Breitmeyer, B. G. (1978a). Metacontrast as a function of mask energy.Bulletin of the Psychonomic Society, 12, 50-52.
  • Breitmeyer, B. G. (1978b). Metacontrast with black and white stimuli: evidence for inhibition of on and off sustained activity by either on or off transient activity.Vision Research, 18, 1443-1448.[PubMed]
  • Breitmeyer, B. (1984).Visual masking: An integrative approach.New York: Oxford University Press.
  • Breitmeyer, B. G., & Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression and information processing.Psychological Review, 83, 1-36.[PubMed]
  • Breitmeyer, B. G., Kafaligonul, H., Öğmen, H., Mardon, L., Todd, S., Siegler, R. (2006). Meta- and paracontrast reveal differences between contrast- and brightness-processing mechanisms.Vision Research, 46, 2645-2658.[PubMed]
  • Breitmeyer, B. G., Öğmen, H. (2006).Visual masking: Time slices through conscious and unconscious vision.Oxford, UK: Oxford University Press.
  • Bressan, P., & Actis-Grosso, R. (2001). Simultaneous lightness contrast with double increments.Perception, 30, 889-897.[PubMed]
  • Broca, A., & Sulzer, D. (1902). La sensation lumineuse en fonction du temps.Journal de Physiologie et de Pathologie Générale, 4, 632-640.
  • Broca, A., & Sulzer, D. (1904). La sensation lumineuse en fonction du temps.Journal de Physiologie et de Pathologie Générale, 6, 55-68.
  • Chevreul, M.-E. (1839/1967).The principles of harmony and contrast of colours, and their applications to the arts.New York: Reinhold.
  • Clarke, S., Walsh, V., Schoppig, A., Assal, G., & Cowey, A. (1998). Colour constancy impairments in patients with lesions of the prestriate cortex.Experimental Brain Research, 123, 154-158.[PubMed]
  • Cohen, M. A., & Grossberg, S. (1984). Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance.Perception & Psychophysics, 36, 428-456.[PubMed]
  • Cole, R. E., & Diamond, A. L. (1971). Amount of surround and test inducing separation in simultaneous brightness contrast.Perception & Psychophysics. 9, 125-128.
  • Cornelissen, F. W., Wade, A. R., Vladusich, T., Dougherty, R. F., & Wandell, B. A. (2006). No function magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex.Journal of Neuroscience, 26, 3634-3641.[PubMed]
  • Crawford, B. H. (1947). Visual adaptation in relation to brief conditioning stimuli.Proceedings of the Royal Society of London, Series B, 134, 283-302.
  • Diamond, D. (1953). Foveal simultaneous contrast as a function of inducing- and test-field luminances.Journal of Experimental Psychology, 45, 304-314.
  • Diamond, D. (1955). Foveal simultaneous contrast as a function of inducing-field area.Journal of Experimental Psychology, 50, 144-152.
  • Dunn, B., & Leibowitz, H. (1961). The effect of separation between test and inducing fields on brightness constancy.Journal of Experimental Psychology, 61, 505-507.
  • Fehrer, E., & Smith, E. (1962). Effects of luminance ratio on masking.Perceptual and Motor Skills, 14, 243-253.
  • Francis, G. (2000). Quantitative theories of meta-contrast masking.Psychological Review, 107, 768-785.[PubMed]
  • Francis, G., & Cho, Y. S. (2006). Computational models of masking. In H. Öğmen & B. G. Breitmeyer (Eds.)The first half second: The microgenesis and temporal dynamics of unconscious and conscious visual processes(pp. 111-126). Cambridge, MA: MIT Press.
  • Francis, G., & Herzog, M. (2004). Testing quantitative models of backward masking.Psychonomic Bulletin & Review, 11, 104-112.[PubMed]
  • Friedman, H. S., Zhou, H., & von der Heydt, R. (2003). The coding of uniform colour figures in monkey visual cortex.Journal of Physiology (London), 548, 593-613.[PubMed]
  • Fry, G. (1934). Depression of the activity aroused by a flash of light by applying a second flash immediately afterwards to adjacent areas in the retina.American Journal of Physiology, 108, 701-707.
  • Gerrits, H. J. M., de Haan, B., & Vendrik, A. J. H. (1966). Experiments with stabilized retinal images: relations between the observations and neural data.Vision Research, 6, 427-440.[PubMed]
  • Gerrits, H. J. M., & Timmermann, G. J. M. E. N. (1969). The filling-in process in patients with retinal scotoma.Vision Research, 9, 439-442.[PubMed]
  • Gerrits, H. J., & Vendrik, A. J. (1970). Simultaneous contrast, filling-in process and information processing in man's visual system.Experimental Brain Research, 11, 411-430.[PubMed]
  • Gilbert, C.D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual-cortex.Journal of Neuroscience, 9, 2432-2442.[PubMed]
  • Gilchrist, A. L. (1988). Lightness contrast and failures of contrast: a common explanation.Perception & Psychophysics, 43, 415-424.[PubMed]
  • Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., et al. (1999). An anchoring theory of lightness perception.Psychological Review, 106, 795-834.[PubMed]
  • Goethe, J. W. von (1810/1970).Theory of colours.(C. L. Eastlake, transl.). Cambridge, MA: MIT Press.
  • Grinvald, A., Lieke, L. L., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex.Journal of Neuroscience, 14, 2545-2568.[PubMed]
  • Grossberg, S., & Mingolla, E. (1985). Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading.Psychological Review, 92, 173-211.[PubMed]
  • Grossberg, S., & Todorovic, D. (1988). Neural dynamics of 1-D and 2-D brightness perception: a unified model of classical and recent phenomena.Perception & Psychophysics, 43, 241-277.[PubMed]
  • Hart, W. M. Jr. (1987). The temporal responsiveness of vision. In R. A. Moses and W. M. Hart (Eds.)Adler's physiology of the eye: Clinical application.St. Louis: C. V. Mosby Company.
  • Haynes, J. D., Lotto, R. B., & Rees, G. (2004). Responses of human visual cortex to uniform surfaces.Proceedings of the National Academy of Sciences USA, 101, 4286-4291.[PubMed]
  • Heinemann, E. G. (1955). Simultaneous brightness induction as a function of inducing- and test-field luminances.Journal of Experimental Psychology, 50, 89-96.[PubMed]
  • Heinemann, E. G. (1972). Simultaneous brightness induction. In D. Jameson and L. Hurvich (Eds.)Handbook of sensory physiology, (Vol VII/4, pp. 146-169). Berlin: Springer.
  • Hering, E. (1874/1964).Outlines of a theory of the light sense.(L. M. Hurvich and D. Jameson, Transl.). Cambridge, MA: Harvard University Press.
  • Hess, C., & Pretori, H. (1884/1970). Quantitative investigation of the lawfulness of simultaneous brightness contrast. (Translated by H. Flock and J. H. Tenny).Perceptual and Motor Skills, 31, 947-969.
  • Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat's visual cortex.Journal of Neuroscience, 11, 1800-1809.[PubMed]
  • Hong, S. W., & Shevell, S. K. (2004). Brightness induction: unequal spatial integration with increments and decrements.Visual Neuroscience, 21, 353-357.[PubMed]
  • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate cortex.Journal of Physiology (London), 148, 574-591.[PubMed]
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex.Journal of Physiology (London), 195, 215-243.[PubMed]
  • Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque visual cortex.Proceedings of the Royal Society of London, Series B, 198, 1-59.[PubMed]
  • Hung, C. P., Ramsden, B. M., Chen, L. M., & Roe, A. W. (2001). Building surfaces from borders in Areas 17 and 18 of the cat.Vision Research, 41, 1389-1407.[PubMed]
  • Hurvich, L. M. (1981).Color vision.Sunderland, MA: Sinauer Associates.
  • Jacobsen, A., & Gilchrist, A. (1988). Hess and Pretori revisited: resolution of some old contradictions.Perception & Psychophysics, 43, 7-14.[PubMed]
  • Jameson, D., & Hurvich, L. M. (1964). Theory of brightness and color contrast in human vision.Vision Research, 4, 135-154.[PubMed]
  • Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (2000). Spatial distribution of contextual interactions in primary visual cortex and in visual perception.Journal of Neuroscience, 84, 2048-2062.[PubMed]
  • Kennard, C., Lawden, M., Morland, A. B., & Ruddock, K. H. (1995). Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions.Proceedings of the Royal Society of London Series B, 206, 169-175.
  • Kentridge, R. W., Heywood, C. A., & Cowey, A. (2004). Chromatic edges, surfaces and constancies in cerebral achromatopsia.Neuropsychologia, 42, 821-830.[PubMed]
  • Kinoshita, M., & Komatsu, H. (2001). Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex.Journal of Neurophysiology, 86, 2559-2570.[PubMed]
  • Kolers, P. (1962). Intensity and contour effects in visual masking.Vision Research, 2, 277-294.
  • Kolers, P., & Rosner, B. S. (1960). On visual masking (metacontrast): dichoptic observations.American Journal of Psychology, 73, 2-21.[PubMed]
  • Kozaki, A. (1963). A further study in the relationship between brightness constancy and contrast.Japanese Psychological Research, 5, 129-136.
  • Kozaki, A. (1965). The effect of co-existent stimuli other than the test stimulus on brightness constancy.Japanese Psychological Research, 7, 138-147.
  • Lachman, R., Lachman, J. L., & Butterfield, E. C. (1979).Cognitive psychology and information processing: An introduction.Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Lamme, V. A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex.Journal of Neuroscience, 15, 1605-1615.[PubMed]
  • Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey.Cerebral Cortex, 9, 406-413.[PubMed]
  • Lamme, V. A. F., & Spekreijse, H. (2000). Modulations of primary visual cortex activity representing attentive and conscious scene perception.Frontiers in the Biosciences, 5, D232-D243.[PubMed]
  • Lamme, V. A., Super, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex.Current Opinion in Neurobiology, 8, 529-535.[PubMed]
  • Lamme, V. A., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1.Journal of Cognitive Neuroscience, 14, 1044-1053.[PubMed]
  • Land, E. H. (1977). The retinex theory of color vision.Scientific American, 237, 108-128.[PubMed]
  • Land, E. H. (1983). Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image.Proceedings of the National Academy of Science USA, 80, 5163-5169.[PubMed]
  • Land, E. H. (1986). An alternative technique for the computation of the designator in the retinex theory of color vision.Proceedings of the National Academy of Sciences USA, 83, 3078-3080.[PubMed]
  • Land, E. H., & McCann, J. J. (1971). The retinex theory of vision.Journal of the Optical Society of America, 61, 1-11.[PubMed]
  • Lee, T. S., Mumford, D., Romero, R., & Lamme, V. A. F. (1998). The role of the primary visual cortex in higher level vision.Vision Research, 38, 2429-2454.[PubMed]
  • Lefton, L. A. (1973). Metacontrast: a review.Perception & Psychophysics, 13, 161-171.
  • Leibowitz, H., Mote, F. A., & Thurlow, W. R. (1953). Simultaneous contrast as a function of separation between test and inducing fields.Journal of Experimental Psychology, 46, 453-456.[PubMed]
  • Weisstein, N., & Growney, R. (1969). Apparent movement and metacontrast: a note on Kahneman's formulation.Perception & Psychophysics, 5, 321-328.
  • Werner, H. (1935). Studies on contour: I. Qualitative analyses.American Journal of Psychology, 47, 40-64.
  • Werner, H. (1940). Studies on contour strobostereoscopic phenomena.American Journal of Psychology, 54, 418-422.
  • Whittle, P. (1994). Contrast brightness and ordinary seeing. In A. L. Gilchrist (Ed.)Lightness, brightness, and transparency(pp. 111-157). Hillsdale, NJ: Erlbaum.
  • Whittle, P., & Challands, P. D. C. (1969). The effect of background luminance on the brightness of flashes.Vision Research, 9, 1095-1110.[PubMed]
  • Zeki, S., Aglioti, S., McKeefry, D., & Berlucchi, G. (1999). The neurological basis of conscious color perception in a blind patient.Proceedings of the National Academy of Sciences USA, 96, 14124-14129.[PubMed]
  • Zeki, S., & Marini, L. (1998). Three cortical stages of colour processing in the human brain.Brain, 121, 1669-1686.[PubMed]
  • Zemach, I. K., & Rudd, M. E. (2007). Effects of surround articulation on lightness depend onthe spatial arrangement of the articulated region.Journal of the Optical Society of America A: Image Science, and Vision, 24, 1830-1841.
  • Zhou, H., Friedman, H. S., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex.Journal of Neuroscience, 20, 6594-6611.[PubMed]
  • Zipser, K., Lamme, V. A., Schiller, P. H. (1996). Contextual modulation in primary visual cortex.Journal of Neuroscience, 16, 7376-7389.[PubMed]
  • Agostini, T., & Bruno, N. (1996). Lightness contrast in CRT and paper-and-illuminant displays.Perception & Psychophysics, 58, 250-258.
  • Aiba, T. S., & Stevens, S. S. (1964). Relation of brightness to duration under light- and dark-adaptation.Vision Research, 4, 391-401.[PubMed]
  • Alpern, M. (1952). Metacontrast: historical introduction.American Journal of Optometry, 29, 631-646.[PubMed]
  • Alpern, M. (1953). Metacontrast.Journal of the Optical Society of America, 43, 648-657.
  • Wallach, H. (1948). Brightness constancy and the nature of achromatic colors.Journal of Experimental Psychology, 38, 310-324.
  • Wallach, H. (1963). The perception of neutral colors.Scientific American, 208, 107-116.[PubMed]
  • Wallach, H. (1976).On perception.New York: Quadrangle Books.
  • Walsh, V. (1999). How does the cortex construct color?Proceedings of the National Academy of Sciences USA, 96, 13594-13596.[PubMed]
  • Weisstein, N. (1971). W-shaped and U-shaped functions obtained for monoptic and dichoptic disk-disk masking.Perception & Psychophysics, 9, 275-278.
  • Weisstein, N. (1972). Metacontrast. In D. Jameson and L. Hurvich (Eds.)Handbook of sensory physiology, (Vol VII/4, pp. 233-272). Berlin: Springer.
  • Levine, R., Didner, R., & Tobenkin, N. (1967). Backward masking as a function of interstimulus distance.Psychonomic Science, 9, 185-186.
  • MacEvoy, S. P., Kim, W., & Paradiso, M. A. (1998). Integration of surface information in primary visual cortex.Nature Neuroscience, 1, 616-620.[PubMed]
  • May, J. G., Grannis, S. W., & Porter, R. J. Jr. (1980). The 'lag effect' in dichoptic viewing.Brain and Language, 11, 19-29.[PubMed]
  • Mizobe, K., Polat, U., Pettet, M. W., & Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field.Visual Neuroscience, 18, 377-391.[PubMed]
  • Paradiso, M. A., & Hahn, S. (1996). Filling-in percepts produced by luminance modulation.Vision Research, 36, 2657-2663.[PubMed]
  • Paradiso, M. A., & Nakayama, K. (1991). Brightness perception and filling-in.Vision Research, 31, 1221-1236.[PubMed]
  • Pessoa, L., Thompson, E., & Noe, A. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception.Behavioral and Brain Sciences, 21, 723-748. [discussion 748-802].[PubMed]
  • Popa, D., & Rudd, M. E. (in preparation). A neural theory of edge integration and contrast gain control in achromatic color perception.
  • Qiu, F. T., & von der Heydt, R. (2005). Figure and ground in visual cortex: V2 combines stereoscopic cues with Gestalt rues.Neuron, 47, 155-166.[PubMed]
  • Raab, D. (1962). Magnitude estimation of the brightness of brief foveal stimuli.Science, 135, 42-43.[PubMed]
  • Reeves, A. (1982). Metacontrast U-shaped functions derive from two monotonic processes.Perception, 11, 415-426.[PubMed]
  • Reid, R. C. Jr, & Shapley, R. (1988). Brightness induction by local contrast and the spatial dependence of assimilation.Vision Research, 28, 115-132.[PubMed]
  • Rossi, A. F., & Paradiso, M. A. (1996). Temporal limits of brightness induction and mechanisms of brightness perception.Vision Research, 36, 1391-1398.[PubMed]
  • Rossi, A. F., & Paradiso, M. A. (1999). Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex.Journal of Neuroscience, 19, 6145-6156.[PubMed]
  • Rossi, A. F., Rittenhouse, C. D., & Paradiso, M. A. (1996). The representation of brightness in primary visual cortex.Science, 273, 1104-1107.[PubMed]
  • Rudd, M. E. (2001). Lightness computation by a neural filling-in mechanism.Proceedings of the Society of Photo-Optical Engineers, 4299, 400-413.
  • Rudd, M. E. (2003a). Progress on a computational model of human achromatic color processing.Proceedings of the Society of Photo-Optical Instrumentation Engineers, 5007, 170-181.
  • Rudd, M. E. (2003b). Neural mechanisms of achromatic colour perception: filling-in, edge integration, and awareness [Abstract].Perception (suppl.), 32, 52-53.
  • Rudd, M. E., & Arrington, K. F. (2001). Darkness filling-in: a neural model of darkness induction.Vision Research, 41, 3649-3662.[PubMed]
  • Rudd, M. E., & Popa, D. (2004a). A theory of the neural processes underlying edge integration in human lightness perception [Abstract].Journal of Vision, 4, 345a.
  • Rudd, M. E., & Popa, D. (2004b). Edge integration and edge interaction in achromatic color computation, [Abstract],Journal of Vision, 4, 79.
  • Rudd, M. E., & Popa, D. (2007). Stevens' brightness law, contrast gain control, and edge integration in achromatic color perception: a unified model.Journal of the Optical Society of America A: Image Science, and Vision, 24, 2766-2782.
  • Rudd, M. E., & Zemach, I. K. (2004). Quantitative properties of achromatic color induction: an edge integration analysis.Vision Research, 44, 971-981.[PubMed]
  • Rudd, M. E., & Zemach, I. K. (2005). The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory.Journal of Vision, 5, 983-1003.[PubMed]
  • Rudd, M. E., & Zemach, I. K. (2007). Contrast polarity and edge integration in achromatic color perception.Journal of the Optical Society of America A: Image Science, and Vision, 24, 2134-2156.[PubMed]
  • Rudd, M. E. (in preparation). Edge integration and anchoring in the perception of lightness, brightness, and brightness contrast.
  • Saito, H., & Fukada, Y. (1986). Gain-control mechanisms in X-type and Y-type retinal ganglion- cells of the cat.Vision Research, 26, 391-408.[PubMed]
  • Sasaki, Y., & Watanabe, T. (2004). The primary visual cortex fills in color.Proceedings of the National Academy of Sciences USA, 101, 18251-18256.[PubMed]
  • Shapley, R., & Reid, R. C. (1985). Contrast and assimilation in the perception of brightness.Proceedings of the National Academy of Sciences of the USA, 82, 5983-5986.[PubMed]
  • Schiller, P. H., & Smith, M. C. (1968). A comparison of forward and backward masking.Psychonomic Sciences, 3, 77-78.
  • Smithson, H. E. (2005). Sensory, computational, and cognitive components of human colour constancy.Philosophical Transactions of the Royal Society, 360, 1329-1346.[PubMed]
  • Spencer, T. J., & Shuntich, R. (1970). Evidence for an interruption theory of backward masking.Journal of Experimental Psychology, 85, 198-203.[PubMed]
  • Stainton, W. H. (1928). The phenomenon of Broca and Sulzer in foveal vision.Journal of the Optical Society of America, 16, 27-37.
  • Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex.Neuron, 36, 739-750.
  • Stevens, J. C., & Hall, J. W. (1966). Brightness and loudness as functions of stimulus duration.Perception & Psychophysics, 1, 319-327.
  • Stevens, J. C., & Marks, L. E. (1999). Stevens power law in vision: exponents, intercepts, and thresholds. in P. Killeen and W. Uttal (Eds.).Fechner Day 99: Proceedings of the Fifteenth Annual Meeting of the International Society for Psychophysics, (pp. 82-87), Tempe, AZ: ISP.
  • Stevens, S. S. (1953). On the brightness of lights and loudness of sounds.Science, 118, 576.
  • Stevens, S. S. (1961). To honor Fechner and repeal his law.Science, 133, 80-86.
  • Stevens, S. S. (1966). Duration, luminance, and the brightness exponent.Perception & Psychophysics, 1, 66-100.
  • Stevens, S. S. (1967). Intensity functions in sensory systems.International Journal of Neurology, 6, 202-209.
  • Stevens, S. S. (1975).Psychophysics: Introduction to its perceptual, neural, and social prospects.New York: John Wiley & Sons.
  • Stewart, A. L., & Purcell, D. G. (1974). Visual backward masking by a flash of light: a study of U-shaped detection functions.Journal of Experimental Psychology, 103, 553-566.
  • Stigler, R. (1926). Die untersuchung des zeitlichten verluafes der optischen erregung mittels des metakontrastes. In E. Aberhalden (Ed.)Handbuch der biologischen Arbeitsmethoden(Part 6, Whole No. 6 pp. 949-968). Berlin: Urban and Schwarzenberg.
  • Turvey, M. T. (1973). On peripheral and central processes in vision: interences from an information-processing analysis of masking with patterned stimuli.Psychological Review, 80, 1-52.[PubMed]
  • Vladusich, T., Lucassen, M. P., & Cornelissen, F. W. (2006). Edge integration and the perception of lightness and darkness.Journal of Vision, 6, 1126-1147.[PubMed]
  • von der Heydt, R., Friedman, H. S., & Zhou, H. (2003). Searching for the neural mechanisms of color filling-in. In Pessoa L., & De Weerd P. (Eds.)Filling-in: From perceptual completion to skill learning(pp. 106-127). New York: Oxford UP.
  • von der Heydt, R., Zhou, H., & Friedman, H. S. (2003). Neural coding of border ownership: implications for the theory of figure-ground perception. In M. Behrmann, R. Kimchi and C.R. Olson (Eds.),Perceptual organization in vision: Behavioral and neural perspectives(pp. 281-304). Mahwah, NJ: Lawrence Erlbaum.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0034-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.