Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2006 | 2 | 2-3 | 145-161

Article title

Overview of the KTH rule system for musical performance

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
The KTH rule system models performance principles used by musicians when performing a musical score, within the realm of Western classical, jazz and popular music. An overview is given of the major rules involving phrasing, micro-level timing, metrical patterns and grooves, articulation, tonal tension, intonation, ensemble timing, and performance noise. By using selections of rules and rule quantities, semantic descriptions such as emotional expressions can be modeled. A recent real-time implementation provides the means for controlling the expressive character of the music. The communicative purpose and meaning of the resulting performance variations are discussed as well as limitations and future improvements.

Publisher

Year

Volume

2

Issue

2-3

Pages

145-161

Physical description

Contributors

  • Department of Speech, Music and Hearing, KTH, Stockholm
  • Department of Speech, Music and Hearing, KTH, Stockholm
  • Department of Speech, Music and Hearing, KTH, Stockholm

References

  • Ahlbäck, S. (2004).Melody Beyond Notes. A study in melody cognition.(Doctoral thesis) Publications from the department of Musicology, Göteborg University.
  • Arcos, J. L., Lopez de Mantaras, R. & Serra, X. (1998). Generating expressive musical performances with SaxEx.Journal of New Music Research, 27, 194-210.
  • Barbour, J. M. (1951, 2004).Tuning and Temperament.Courier Dover Publications.
  • Bengtsson, I. & Gabrielsson, A. (1983). Analysis and synthesis of musical rhythm. In J. Sundberg, (ed.),Studies of Music Performance, Stockholm: Royal Swedish Academy of Music, Publication No. 39, (pp. 27-60).
  • Borchers, J., Lee, E. & Samminger, W. (2004). Personal Orchestra: A Real-Time Audio/Video System for Interactive Conducting.Multimedia Systems9, 458-465.
  • Bresin, R. (1993). MELODIA: a program for performance rules testing, teaching, and piano scores performing. InProceedings of the X Italian Colloqium on Music Informatics (CIM), AIMI, Padova.
  • Bresin, R. (1998). Artificial neural networks based models for automatic performance of musical scores,Journal of New Music Research, 27, 239-270.
  • Bresin, R. (2000).Virtual Virtuosity - Studies in automatic music performance.Doctoral Dissertation, Speech Music and Hearing, Stockholm: KTH, TRITATMH 2000:9, ISSN 1104-5787, ISBN 91-7170-643-7.
  • Bresin, R. (2001). Articulation rules for automatic music performance. In Proceedings of the International Computer Music Conference 2001, Havana, (pp. 294-297).
  • Bresin, R. & Battel, G. U. (2000). Articulation strategies in expressive piano performance. Analysis of legato, staccato, and repeated notes in performances of the andante movement of Mozart's Sonata in G major (k 545).Journal of New Music Research, 29, 211-224.
  • Bresin, R. & Friberg, A. (1997). A multimedia environment for interactive music performance. InProceedings of KANSEI - The Technology of Emotion AIMI International Workshop, Genova, 1997, (pp. 64-67).
  • Bresin, R. & Friberg, A. (2000). Emotional Coloring of Computer-Controlled Music Performances.Computer Music Journal, 24, 44-63.
  • Bresin, R. & Friberg, A. (2001). Expressive musical icons. InProceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, (pp. 141-143).
  • Bresin, R. & Widmer, G. (2000). Production of staccato articulation in Mozart sonatas played on a grand piano. Preliminary results,TMH-QPSR - Speech Music and Hearing Quarterly Progress and Status Report, 2000-4, 1-6.
  • Bresin, R., De Poli, G. & Ghetta, R. (1995). Fuzzy performance rules. InProceedings of the KTH Symposium on "Grammars for music performance", Stockholm, (pp. 15-36).
  • Bresin, R., De Poli, G. & Vidolin A. (1992). Symbolic and sub-symbolic rules system for real time score performance. InProceedings of the International Computer Music Conference 1992, San Jose, (pp. 211-214).
  • Cambouropoulos, E. (1998).Towards a General Computational Theory of Musical Structure.PhD Thesis, Faculty of Music and Department of Artificial Intelligence, University of Edinburgh.
  • Carlson, R., Friberg, A., Frydén, L., Granström, B. & Sundberg, J. (1989). Speech and music performance: parallels and contrasts.Contemporary Music Review, 4, 389-402.
  • Carlson, R. & Granström, B. (1975). A phonetically oriented programming language for rule description of speech. In G. Fant, (ed.),Speech communication2, Stockholm: Almquist & Wiksell, (pp. 245-253).
  • Clarke, E. F. (1985). Structure and Expression in rhythmic performance. In P. Howell, I. Cross, & R. West (Eds.),Musical structure and cognition, London: Academic press, (pp. 209-236).
  • Clarke, E. F. (1988). Generative principles in music performance. In J. Sloboda, (ed.),Generative processes in music, Oxford: Claredon press, (pp. 1-26).
  • Clynes, M. (1983). Expressive microstructure in music, linked to living qualities. In J. Sundberg, (ed.),Studies of Music Performance, Stockholm: Royal Swedish Academy of Music, Publication No. 39, (pp. 76-181).
  • De Poli, G. (2004). Methodologies for expressiveness modeling of and for music performance.Journal of New Music Research33, 189-202.
  • De Poli, G., Rodà, A. & Vidolin, A. (1998). Note-by-Note Analysis of the influence of Expressive Intentions and Musical Structure in Violin performance.Journal of New Music Research, 27, 293-321.
  • Desain, P. & Honing, H. (1994). Does expressive timing in music performance scale proportionally with tempo?Psychological Research, 56, 285-292.
  • Friberg, A. (1991). Generative Rules for Music Performance: A Formal Description of a Rule System.Computer Music Journal, 15, 56-71.
  • Friberg, A. (1995a). Matching the rule parameters of Phrase arch to performances of"Träumerei": A preliminary study. In A. Friberg & J. Sundberg (eds.),Proceedings of the KTH symposium on Grammars for music performance May 27, 1995, (pp. 37-44).
  • Friberg, A. (1995b).A Quantitative Rule System for Musical Expression.Doctoral dissertation, Royal Institute of Technology, Sweden.
  • Friberg, A. (2005). Home conducting - Control the overall musical expression with gestures. InProceedings of the 2005 International Computer Music Conference, San Francisco: International Computer Music Association. (pp. 479-482).
  • Friberg, A. (2006). pDM: an expressive sequencer with real-time control of the KTH music performance rules.Computer Music Journal, 30, 37-48.
  • Friberg, A. & Battel, G. U. (2002). Structural Communication. In R. Parncutt & G. E. McPherson (Eds.),The Science and Psychology of Music Performance: Creative Strategies for Teaching and Learning.(pp. 199-218) New York: Oxford University Press.
  • Friberg, A. & Sundberg, J. (1995). Time discrimination in a monotonic, isochronous sequence.Journal of the Acoustical Society of America, 98, 2524-2531.
  • Friberg, A. & Sundberg, J. (1999) Does music performance allude to locomotion? A model of finalritardandiderived from measurements of stopping runners.Journal of the Acoustical Society of America, 105, 1469-1484.
  • Friberg, A. & Sundström, A. (2002). Swing ratios and ensemble timing in jazz performance: Evidence for a common rhythmic pattern.Music Perception, 19, 333-349.
  • Friberg, A., Bresin, R., Frydén, L., & Sundberg, J. (1998) Musical punctuation on the microlevel: Automatic identification and performance of small melodic units.Journal of New Music Research, 27, 271-292.
  • Friberg, A., Frydén, L., Bodin, L.-G., & Sundberg, J. (1991) Performance Rules for Computer-Controlled Contemporary Keyboard Music.Computer Music Journal, 15, 49-55.
  • Frydén, L., Sundberg, J. & Askenfelt, A. (1988). Perception aspects of a rule system for converting melodies from musical notation into sound.Archives of Acoustics13, 269-278.
  • Fyk, J. (1995)Melodic Intonation, Psychoacoustics, and the Violin.Zielona Góra: Organon.
  • Gabrielson, A. & Juslin, P. (1996). Emotional expression in music performance: Between the performer's intention and the listener's experience.Psychology of Music, 24, 68-91.
  • Gabrielsson, A. (1985). Interplay between analysis and synthesis in studies of music performance and music experience.Music Perception, 3, 59-86.
  • Gabrielsson, A. (1987). Once again: the theme from Mozart's piano sonata in A major (K. 331) A comparison of five performances. In A. Gabrielsson (ed.),Action and Perception in Rhythm and Music, Stockholm: Royal Swedish Academy of Music, Publication No. 55, (pp. 81-103).
  • Gabrielsson, A. (1999). Music Performance. in D. Deutsch (ed.),The Psychology of Music(2nd ed.), New York: Academic press. (pp. 501-602).
  • Gabrielsson, A., Bengtsson, I., & Gabrielsson, B. (1983). Performance of musical rhythm in 3/4 and 6/8 meter.Scandinavian Journal of Psychology, 24, 193-213.
  • Garbuzov, N. (1948).Zonal nature of a pitch perception.Moscow: Academy of Science of the USSR, in Russian.
  • Gilden, D. L., Thornton, T. & Mallon, M. W. (1995). 1/f Noise in Human Cognition.Science, 267, 1837-1839.
  • Goebl, W. (2001). Melody lead in piano performance: Expressive device or artifact?Journal of the Acoustical Society of America, 110, 563-572.
  • Hagerman, B. & Sundberg, J. (1980). Fundamental frequency adjustment in barbershop singing.Journal of Research in Singing, 4, 3-17.
  • Hansen, K.F. (2006). Musical structure: A translation of István Ipolyi's (1952) Innføring i Musikkspråkets Opprinnelse og Struktur.Speech, Music and Hearing Quarterly Progress and Status Report, 48.
  • Hefling, S.E. (1993).Rhythmicalteration in Seventeenth-and Eighteenth-Century Music:Notes inégalesand overdotting.New York: Schirmer Books.
  • Hellkvist, A. (2004). Implementation of Performance Rules in Igor Engraver. Master thesis, Department of Information Technology, Uppsala University, Sweden.
  • Henderson, A. T. (1936). Rhythmic organization in artistic piano performance. In C. E. Seashore (ed.),Objective analysis of musical performance. Univ. of Iowa Studies in the Psychology of Music, Vol IV, Iowa City: University of Iowa, (pp. 281-305).
  • Hevner, K. (1937). The affective value of pitch and tempo in music.American Journal of Psychology, 49, 621-30.
  • Honing, H. (2005a). Timing is tempo-specific.Proceedings of the International Computer Music Conference, San Francisco: International Computer Music Association. (pp. 359-362).
  • Honing, H. (2005b). Is there a perception-based alternative to kinematic models of tempo rubato?Music Perception, 23, 79-85.
  • Honing, H. (in press 2006). Computational modeling of music cognition: A case study on model selection.Music Perception23, 365-376.
  • Hudson, R. (1994).Stolen Time - The History of Tempo Rubato.Oxford: Clarendon press.
  • Ipolyi, I. (1952).Innføring i musikspråkets opprinnelse och struktur.Bergen: J.W. Eides Forlag (in Norwegian).
  • Juslin, P. N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception.Journal of Experimental Psychology: Human Perception and Performance, 26, 1797-1813.
  • Juslin, P. N. (2001). Communication of emotion in music performance: A review and a theoretical framework. In P. N. Juslin & J. A. Sloboda (Eds.),Music and emotion: Theory and research(pp. 309-337). New York: Oxford University Press.
  • Juslin, P. N., Friberg, A. & Bresin, R. (2002). Toward a computational model of expression in performance: The GERM model.Musicae Scientiae special issue2001-2002, 63-122.
  • Juslin, P. N. & Sloboda J. A. (Eds.) (2001).Music and Emotion: Theory and Research.Oxford: Oxford University Press.
  • Kroiss W. (2000). Parameteroptimierung für ein Modell des musikalischen Ausdrucks mittels genetischer Algorithmen. Master thesis, Department of Medical Cybernetics and Artificial Intelligence, University of Vienna
  • Krumhansl, C. L. & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organization in spatial representation of musical keys,Psychological Review, 89, 334-368.
  • Larsson, B. (1977) Music and singing synthesis equipment (musse).STL-QPSR, 18(1):38-40.
  • Lerdahl, F. & Jackendoff, R. (1983).A generative theory of tonal music.Cambridge, Mass.: The MIT Press.
  • London, J. (2004).Hearing in time: Psychological aspects of musical meter.New York: Oxford University Press.
  • Mathews, M. V. (1989). The Conductor Program and the Mechanical Baton. In M. Mathews and J. Pierce, eds.Current Directions in Computer Music Research.Cambridge, Massachusetts: MIT Press, (pp. 263-282).
  • Mathews, M. V., Friberg, A., Bennett, G., Sapp, C. & Sundberg, J. (2003). A marriage of the Director Musices program and the conductor program. In R Bresin (Ed.)Proceedings of the Stockholm Music Acoustics Conference 2003, VolI, (pp. 13-16).
  • Mazzola, G. (1990).Geometrie der Töne. Elemente der Mathematischen Musiktheorie.Basel: Birkhäuser Verlag.
  • Mazzola, G. (Ed.) (2002).The topos of music - geometric logic of concepts, theory, and performance.Basel: Birkhäuser Verlag.
  • Narmour, E. (1990).The analysis and cognition of basic melodic structures: The implication-realization model, Chicago: University of Chicago Press.
  • Palmer, C. (1996). On the Assignment of Structure in Music Performance.Music Perception.14, 23-56.
  • Povel, D.-J. & Essens, P. (1985). Perception of temporal patterns.Music Perception, 2, 411-440.
  • Rasch, R. A. (1979). Synchronization in Performed Ensemble Music.Acustica, 43, 121-131.
  • Repp, B. H. (1992). Diversity and commonality in music performance: An analysis of timing microstructure in Schumann's "Träumerei".Journal of the Acoustical Society of America, 92, 2546-2568.
  • Repp, B. H. (1994). Relational invariance of expressive microstructure across global tempo changes in music performance: An exploratory study.Psychological Research, 56, 269-284.
  • Seashore, C. E. (1938).Psychology of music.New York: McGraw-Hill. (reprinted 1967 by Dover Publications, New York).
  • Sundberg, J. (1993). How can music be expressive?Speech Communication, 13, 239-253.
  • Sundberg, J. (2000). Grouping and differentiation. Two main principles in the performance of music. In T. Nakada (Ed.),Integrated human brain science: Theory, method application (music).(p. 299-314). Amsterdam: Elsevier.
  • Sundberg, J. & Lindquist, J. (1973). Musical octaves and pitch.Journal of the Acoustical Society of America, 54, 922-929.
  • Sundberg, J. & Verrillo, V. (1980). On the anatomy of the ritard: A study of timing in music.Journal of the Acoustical Society of America, 68, 772-779.
  • Sundberg, J., Askenfelt, A. & Frydén, L. (1983). Musical performance: A synthesis-by-rule approach.Computer Music Journal, 7, 37-43.
  • Sundberg, J., Friberg, A. & Bresin, R. (2003). Attempts to reproduce a pianist's expressive timing with Director Musices performance rules.Journal of New Music Research, 32, 317-326.
  • Sundberg, J., Friberg, A. & Frydén, L. (1989). Rules for automated performance of ensemble music.Contemporary Music Review, 3, 89-109.
  • Sundberg, J., Friberg, A. & Frydén, L. (1991). Threshold and preference Quantities of Rules for Music Performance.Music Perception, 9, 71-92.
  • Sundberg, J., Frydén, L. & Askenfelt, A. (1982). What tells you the player is musical? A study of music performance by means of analysis-by-synthesis.KTH Speech Transmission Laboratory Quarterly Progress and Status Report, 23, 135-148.
  • Temperley, D. (2001).The Cognition of Basic Musical Structures.MIT Press.
  • Thompson, W. F., Sundberg, J., Friberg, A. & Frydén, L. (1989). The Use of Rules for Expression in the Performance of Melodies.Psychology of Music, 17, 63-82.
  • Todd, N. P. McA. (1985). A model of expressive timing in tonal music.Music Perception, 3, 33-58.
  • Todd, N. P. McA. (1989). A computational model of rubato.Contemporary Music Review, 3, 69-88.
  • Vernon, L. N. (1936). Synchronization of chords in artistic piano music. In C.E. Seashore (ed.)Objective analysis of musical performance. University of Iowa studies in the psychology of music Vol. 5, (pp 306-345), Iowa city: University of Iowa press.
  • Widmer, G. (1995). Modeling rational basis for musical expression.Computer Music Journal, 19, 76-96.
  • Widmer, G. (2002). Machine discoveries: A few simple, robust local expression principles.Journal of New Music Research, 31, 37-50.
  • Widmer, G. & Goebl, W. (2004). Computational models of expressive music performance: The state of the art.Journal of New Music Research, 33, 203-216.
  • Widmer, G. & Tobudic, A. (2003). Playing Mozart by analogy: Learning multi-level timing and dynamics strategies.Journal of New Music Research, 32, 259-268.
  • Zanon, P. & De Poli, G. (2003). Estimation of Time-Varying Parameters in Rule Systems for Music Performance.Journal of New Music Research, 32

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0052-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.