Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2011 | 7 | 92-107

Article title

Good vibrations, bad vibrations: Oscillatory brain activity in the attentional blink

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
The attentional blink(AB) is a deficit in reporting the second (T2) of two targets (T1, T2) when presented in close temporal succession and within a stream of distractor stimuli. The AB has received a great deal of attention in the past two decades because it allows to study the mechanisms that influence the rate and depth of information processing in various setups and therefore provides an elegant way to study correlates of conscious perception in supra-threshold stimuli. Recently evidence has accumulated suggesting that oscillatory signals play a significant role in temporally coordinating information between brain areas. This review focuses on studies looking into oscillatory brain activity in the AB. The results of these studies indicate that the AB is related to modulations in oscillatory brain activity in the theta, alpha, beta, and gamma frequency bands. These modulations are sometimes restricted to a circumscribed brain area but more frequently include several brain regions. They occur before targets are presented as well as after the presentation of the targets. We will argue that the complexity of the findings supports the idea that the AB is not the result of a processing impairment in one particular process or brain area, but the consequence of a dynamic interplay between several processes and/or parts of a neural network.

Year

Volume

7

Pages

92-107

Physical description

Contributors

  • Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University, Oldenburg, Germany

References

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses.Science, 273(5283), 1868-1871.
  • Baars, B. (1998).A cognitive theory of consciousness.New York: Cambridge University Press.
  • Broadbent, D. E., & Broadbent, M. H. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation.Perception & Psychophysics, 42(2), 105-113.
  • Busch, N. A., Debener, S., Kranczioch, C., Engel, A. K., & Herrmann, C. S. (2004). Size matters: Effects of stimulus size, duration, and eccentricity on the visual gamma-band response.Clinical Neurophysiology, 115(8), 1810-1820.
  • Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception.The Journal of Neuroscience, 29(24), 7869-7876.
  • Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices.Science, 315(5820), 1860-1862.
  • Buschman, T. J., & Miller, E. K. (2009). Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations.Neuron, 63(3), 386-396.
  • Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies.Psychological Bulletin, 132(2), 180-211.
  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation.Journal of Experimental Psychology: Human Perception and Performance, 21(1), 109-127.
  • Coull, J. T. (2004). fMRI studies of temporal attention: Allocating attention within, or towards, time. Brain Research.Cognitive Brain Research, 21(2), 216-226.
  • Dawson, G. D. (1954). A summation technique for the detection of small evoked potentials.Electroencephalography and Clinical Neurophysiology, 6(1), 65-84.
  • Debener, S., Herrmann, C. S., Kranczioch, C., Gembris, D., & Engel, A. K. (2003). Top-down attentional processing enhances auditory evoked gamma band activity.NeuroReport, 14(5), 683-686.
  • Dehaene, S., Sergent, C., & Changeux, J. P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception.Proceedings of the National Academy of Sciences USA, 100(14), 8520-8525.
  • Dell'Acqua, R., Sessa, P., Jolicoeur, P., & Robitaille, N. (2006). Spatial attention freezes during the attention blink.Psychophysiology, 43(4), 394-400.
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.Journal of Neuroscience Methods, 134(1), 9-21.
  • Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: the psychophysics of reentrant visual processes.Journal of Experimental Psychology: General, 129(4), 481-507.
  • Draganova, R., & Popivanov, D. (1999). Assessment of EEG frequency dynamics using complex demodulation.Physiological Research, 48(2), 157-165.
  • Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory.Attention, Perception, & Psychophysics, 71(8), 1683-1700.
  • Engel, A. K., & Fries, P. (2010). Beta-band oscillations: Signalling the status quo?Current Opinion in Neurobiology, 20(2), 156-165.
  • Engel, A. K., Fries, P., König, P., Brecht, M., & Singer, W. (1999). Temporal binding, binocular rivalry, and consciousness.Consciousness and Cognition, 8(2), 128-151.
  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing.Nature Reviews Neuroscience, 2(10), 704-716.
  • Feinstein, J. S., Stein, M. B., Castillo, G. N., & Paulus, M. P. (2004). From sensory processes to conscious perception.Consciousness and Cognition, 13(2), 323-335.
  • Fell, J., Klaver, P., Elger, C. E., & Fernandez, G. (2002). Suppression of EEG gamma activity may cause the attentional blink.Consciousness and Cognition, 11(1), 114-122.
  • Fontanini, A., & Katz, D. B. (2008). Behavioral states, network states, and sensory response variability.Journal of Neurophysiology, 100(3), 1160-1168.
  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence.Trends in Cognitive Sciences, 9(10), 474-480.
  • Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation.Annual Review of Neuroscience, 32, 209-224.
  • Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., & Salmelin, R. (2001). Dynamic imaging of coherent sources: Studying neural interactions in the human brain.Proceedings of the National Academy of Sciences USA, 98(2), 694-699.
  • Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans.Proceedings of the National Academy of Sciences of the United States of America, 101(35), 13050-13055.
  • Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., & Schnitzler, A. (2006). Anticipatory control of long-range phase synchronization.The European Journal of Neuroscience, 24(7), 2057-2060.
  • Gutberlet, I. D. S., Jung, T. P., & Makeig, S. (2009). Techniques of EEG recording and preprocessing. In S. Tong & N. V. Thakor (Eds.),Quantitative EEG analysis methods and clinical applications(pp. 23-50). London: Artech House.
  • Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bauml, K. H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects.NeuroImage, 37(4), 1465-1473.
  • Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L. (2011). The role of alpha oscillations in temporal attention.Brain Research Reviews, 67(1-2), 331-343.
  • Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking.Neuroscience Letters, 375(1), 64-68.
  • Hein, G., Alink, A., Kleinschmidt, A., & Müller, N. G. (2009). The attentional blink modulates activity in the early visual cortex.Journal of Cognitive Neuroscience, 21(1), 197-206.
  • Herrmann, C. S. (2001). Human EEG responses to 1-100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena.Experimental Brain Research, 137(3-4), 346-353.
  • Herrmann, C. S., Fründ, I., & Lenz, D. (2010). Human gamma-band activity: A review on cognitive and behavioral correlates and network models.Neuroscience and Biobehavioral Reviews, 34(7), 981-992.
  • Herrmann, C. S., Grigutsch, M., & Busch, N. (2002). EEG oscillations and wavelet analysis. In T. C. Handy (Ed.),Event-related potentials: A methods handbook.London: MIT Press.
  • Herrmann, C. S., & Kaiser, J. (2010). EEG gamma-band responses reflect human behavior: An overview.International Journal of Psychophysiology, 79(1), 1-2.
  • Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations.Neuroscience and Biobehavioral Reviews, 25(6), 465-476.
  • Herrmann, C. S., & Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures: Early evoked gamma is affected by processing of stimulus features.International Journal of Psychophysiology, 38(3), 265-281.
  • Herrmann, C. S., & Mecklinger, A. (2001). Gamma activity in human EEG is related to high-speed memory comparisions during object selective attentions.Visual Cognition, 8, 593-608.
  • Herrmann, C. S., Munk, M. H., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: Memory match and utilization.Trends in Cognitive Sciences, 8(8), 347-355.
  • Hoechstetter, K., Bornfleth, H., Weckesser, D., Ille, N., Berg, P., & Scherg, M. (2004). BESA source coherence: A new method to study cortical oscillatory coupling.Brain Topography, 16(4), 233-238.
  • Hommel, B., Kessler, K., Schmitz, F., Gross, J., Akyurek, E., Shapiro, K., & Schnitzler, A. (2006). How the brain blinks: Towards a neurocognitive model of the attentional blink.Psychological Research, 70(6), 425-435.
  • Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task.The European Journal of Neuroscience, 15(8), 1395-1399.
  • Johnston, S. J., Shapiro, K. L., Vogels, W., & Roberts, N. J. (2007). Imaging the attentional blink: Perceptual versus attentional limitations.NeuroReport, 18(14), 1475-1478.
  • Jolicoeur, P., Sessa, P., Dell'Acqua, R., & Robitaille, N. (2006). On the control of visual spatial attention: Evidence from human electrophysiology.Psychological Research, 70(6), 414-424.
  • Keil, A., & Heim, S. (2009). Prolonged reduction of electrocortical activity predicts correct performance during rapid serial visual processing.Psychophysiology, 46(4), 718-725.
  • Keil, A., Ihssen, N., & Heim, S. (2006). Early cortical facilitation for emotionally arousing targets during the attentional blink.BMC Biology, 4, 23.
  • Kessler, K., Gross, J., Schmitz, F., & Schnitzler, A. (2006). Cortical dynamics and synchronization related to multiple target consolidation under rapid-serial-visual-presentation conditions.Journal of Physiology, Paris, 99(1), 21-28.
  • Kessler, K., Schmitz, F., Gross, J., Hommel, B., Shapiro, K., & Schnitzler, A. (2005). Target consolidation under high temporal processing demands as revealed by MEG.NeuroImage, 26(4), 1030-1041.
  • Kim, C. Y., & Blake, R. (2005). Psychophysical magic: Rendering the visible "invisible".Trends in Cognitive Sciences, 9(8), 381-388.
  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis.Brain Research. Brain Research Reviews, 29(2-3), 169-195.
  • Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). "Paradoxical" alpha synchronization in a memory task. Brain Research.Cognitive Brain Research, 7(4), 493-501.
  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research.Brain Research Reviews, 53(1), 63-88.
  • Kranczioch, C. (2004).Neural correlates of target detection in the attentional blink.Unpublished Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Germany.
  • Kranczioch, C., Debener, S., & Engel, A. K. (2003). Event-related potential correlates of the attentional blink phenomenon. Brain Research.Cognitive Brain Research, 17(1), 177-187.
  • Kranczioch, C., Debener, S., Herrmann, C. S., & Engel, A. K. (2006). EEG gamma-band activity in rapid serial visual presentation.Experimental Brain Research, 169(2), 246-254.
  • Kranczioch, C., Debener, S., Maye, A., & Engel, A. K. (2007). Temporal dynamics of access to consciousness in the attentional blink.NeuroImage, 37(3), 947-955.
  • Kranczioch, C., Debener, S., Schwarzbach, J., Goebel, R., & Engel, A. K. (2005). Neural correlates of conscious perception in the attentional blink.NeuroImage, 24(3), 704-714.
  • Lachaux, J. P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals.Human Brain Mapping, 8(4), 194-208.
  • Luck, S. J. (2005).An introduction to the event-related potential technique.London: The MIT Press.
  • Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink.Nature, 383(6601), 616-618.
  • MacLean, M. H., & Arnell, K. M. (2011). Greater attentional blink magnitude is associated with higher levels of anticipatory attention as measured by alpha event-related desynchronization (ERD).Brain Research, 1387, 99-107.
  • Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics.Trends in Cognitive Sciences, 8(5), 204-210.
  • Marcantoni, W. S., Lepage, M., Beaudoin, G., Bourgouin, P., & Richer, F. (2003). Neural correlates of dual task interference in rapid visual streams: An fMRI study.Brain and Cognition, 53(2), 318-321.
  • Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink.Neuron, 28(1), 299-308.
  • Marois, R., Yi, D. J., & Chun, M. M. (2004). The neural fate of consciously perceived and missed events in the attentional blink.Neuron, 41(3), 465-472.
  • Martens, S., Munneke, J., Smid, H., & Johnson, A. (2006). Quick minds don't blink: Electrophysiological correlates of individual differences in attentional selection.Journal of Cognitive Neuroscience, 18(9), 1423-1438.
  • Martens, S., & Valchev, N. (2009). Individual differences in the attentional blink. The important role of irrelevant information.Experimental Psychology, 56(1), 18-26.
  • Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness.Neuroscience and Biobehavioral Reviews, 34(6), 947-957.
  • Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A. (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment.Cognition, 115(1), 186-191.
  • Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T. (2009). To see or not to see: Prestimulus alpha phase predicts visual awareness.The Journal of Neuroscience, 29(9), 2725-2732.
  • McArthur, G., Budd, T., & Michie, P. (1999). The attentional blink and P300.NeuroReport, 10(17), 3691-3695.
  • Müller, M. M., & Hillyard, S. (2000). Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention.Clinical Neurophysiology, 111(9), 1544-1552.
  • Müller, M. M., & Hübner, R. (2002). Can the spotlight of attention be shaped like a doughnut? Evidence from steady-state visual evoked potentials.Psychological Science, 13(2), 119-124.
  • Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight.Nature, 424(6946), 309-312.
  • Müller, M. M., Teder, W., & Hillyard, S. A. (1997). Magnetoencephalographic recording of steady-state visual evoked cortical activity.Brain Topography, 9(3), 163-168.
  • Nakatani, C., Ito, J., Nikolaev, A. R., Gong, P., & van Leeuwen, C. (2005). Phase synchronization analysis of EEG during attentional blink.Journal of Cognitive Neuroscience, 17(12), 1969-1979.
  • Nieuwenstein, M. R. (2006). Top-down controlled, delayed selection in the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 32(4), 973-985.
  • Nieuwenstein, M. R., Chun, M. M., van der Lubbe, R. H., & Hooge, I. T. (2005). Delayed attentional engagement in the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1463-1475.
  • Nieuwenstein, M. R., & Potter, M. C. (2006). Temporal limits of selection and memory encoding: A comparison of whole versus partial report in rapid serial visual presentation.Psychological Science, 17(6), 471-475.
  • Nieuwenstein, M. R., Potter, M. C., & Theeuwes, J. (2009). Unmasking the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 35(1), 159-169.
  • Nunez, P. L., Silberstein, R. B., Shi, Z., Carpenter, M. R., Srinivasan, R., Tucker, D. M., et al. (1999). EEG coherency II: Experimental comparisons of multiple measures.Clinical Neurophysiology, 110(3), 469-486.
  • Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1997). EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales.Electroencephalography and Clinical Neurophysiology, 103(5), 499-515.
  • Olivers, C. N. L., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention.Psychological Science, 16(4), 265-269.
  • Olivers, C. N. L., & Nieuwenhuis, S. (2006). The beneficial effects of additional task load, positive affect, and instruction on the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 32(2), 364-379.
  • Onoda, K., Okamoto, Y., Shishida, K., Hashizume, A., Ueda, K., Yamashita, H., & Yamawaki, S. (2007). Anticipation of affective images and event-related desynchronization (ERD) of alpha activity: An MEG study.Brain Research, 1151, 134-141.
  • Palva, S., Linkenkaer-Hansen, K., Näätänen, R., & Palva, J. M. (2005). Early neural correlates of conscious somatosensory perception.The Journal of Neuroscience, 25(21), 5248-5258.
  • Potter, M. C., Staub, A., & O'Connor, D. H. (2002). The time course of competition for attention: Attention is initially labile.Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1149-1162.
  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink?Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849-860.
  • Regan, D. (1966). Some characteristics of average steady-state and transient responses evoked by modulated light.Electroencephalography and Clinical Neurophysiology, 20(3), 238-248.
  • Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception's shadow: Long-distance synchronization of human brain activity.Nature, 397(6718), 430-433.
  • Rolke, B., Heil, M., Streb, J., & Hennighausen, E. (2001). Missed prime words within the attentional blink evoke an N400 semantic priming effect.Psychophysiology, 38(2), 165-174.
  • Romei, V., Gross, J., & Thut, G. (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation?The Journal of Neuroscience, 30(25), 8692-8697.
  • Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations.Neuroscience and Biobehavioral Reviews, 34(7), 1015-1022.
  • Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes?Neuroscience and Biobehavioral Reviews, 32(5), 1001-1013.
  • Schurger, A., Cowey, A., Cohen, J. D., Treisman, A., & Tallon-Baudry, C. (2008). Distinct and independent correlates of attention and awareness in a hemianopic patient.Neuropsychologia, 46(8), 2189-2197.
  • Schurger, A., Cowey, A., & Tallon-Baudry, C. (2006). Induced gamma-band oscillations correlate with awareness in hemianopic patient GY.Neuropsychologia, 44(10), 1796-1803.
  • Schwartzman, D. J., & Kranczioch, C. (2011). In the blink of an eye: The contribution of microsaccadic activity to the induced gamma band response.International Journal of Psychophysiology, 79(1), 73-82.
  • Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink.Nature Neuroscience, 8(10), 1391-1400.
  • Shapiro, K. L., Johnston, S. J., Vogels, W., Zaman, A., & Roberts, N. (2007). Increased functional magnetic resonance imaging activity during nonconscious perception in the attentional blink.NeuroReport, 18(4), 341-345.
  • Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation.Journal of Experimental Psychology: Human Perception and Performance, 20(2), 357-371.
  • Shapiro, K. L., Schmitz, F., Martens, S., Hommel, B., & Schnitzler, A. (2006). Resource sharing in the attentional blink.NeuroReport, 17(2), 163-166.
  • Singer, W. (1999). Neurobiology: Striving for coherence.Nature, 397(6718), 391-393.
  • Slagter, H. A., Johnstone, T., Beets, I. A., & Davidson, R. J. (2010). Neural competition for conscious representation across time: An fMRI study.PLoS One, 5(5), e10556.
  • Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson, R. J. (2009). Theta phase synchrony and conscious target perception: Impact of intensive mental training.Journal of Cognitive Neuroscience, 21(8), 1536-1549.
  • Sokolov, A., Lutzenberger, W., Pavlova, M., Preissl, H., Braun, C., & Birbaumer, N. (1999). Gamma-band MEG activity to coherent motion depends on task-driven attention.NeuroReport, 10(10), 1997-2000.
  • Stein, T., Vallines, I., & Schneider, W. X. (2008). Primary visual cortex reflects behavioral performance in the attentional blink.NeuroReport, 19(13), 1277-1281.
  • Summerfield, C., Jack, A. I., & Burgess, A. P. (2002). Induced gamma activity is associated with conscious awareness of pattern masked nouns.International Journal of Psychophysiology, 44(2), 93-100.
  • Taatgen, N. A., Juvina, I., Schipper, M., Borst, J. P., & Martens, S. (2009). Too much control can hurt: A threaded cognition model of the attentional blink.Cognitive Psychology, 59(1), 1-29.
  • Tallon-Baudry, C. (2009). The roles of gamma-band oscillatory synchrony in human visual cognition.Frontiers in Bioscience, 14, 321-332.
  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human.The Journal of Neuroscience, 16(13), 4240-4249.
  • Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.The Journal of Neuroscience, 26(37), 9494-9502.
  • Tiitinen, H., May, P., & Näätänen, R. (1997). The transient 40-Hz response, mismatch negativity, and attentional processes in humans.Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21(5), 751-771.
  • Tiitinen, H., Sinkkonen, J., May, P., & Näätänen, R. (1994). The auditory transient 40-Hz response is insensitive to changes in stimulus features.NeuroReport, 6(1), 190-192.
  • Trujillo, L. T., Peterson, M. A., Kaszniak, A. W., & Allen, J. J. (2005). EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods.Clinical Neurophysiology, 116(1), 172-189.
  • van Dijk, H., Schoffelen, J. M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.The Journal of Neuroscience, 28(8), 1816-1823.
  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration.Nature Reviews. Neuroscience, 2(4), 229-239.
  • Verleger, R., Moller, F., Kuniecki, M., Smigasiewicz, K., Groppa, S., & Siebner, H. R. (2010). The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS.Experimental Brain Research, 203(2), 355-365.
  • Verleger, R., Sprenger, A., Gebauer, S., Fritzmannova, M., Friedrich, M., Kraft, S., & Jaśkowski, P. (2009). On why left events are the right ones: Neural mechanisms underlying the left-hemifield advantage in rapid serial visual presentation.Journal of Cognitive Neuroscience, 21(3), 474-488.
  • Vialatte, F. B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives.Progress in Neurobiology, 90(4), 418-438.
  • Visser, T. A., Bischof, W. F., & Di Lollo, V. (2004). Rapid serial visual distraction: Task-irrelevant items can produce an attentional blink.Perception & Psychophysics, 66(8), 1418-1432.
  • Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1656-1674.
  • Weichselgartner, E., & Sperling, G. (1987). Dynamics of automatic and controlled visual attention.Science, 238(4828), 778-780.
  • Wierda, S. M., van Rijn, H., Taatgen, N. A., & Martens, S. (2010). Distracting the mind improves performance: An ERP study.PLoS One, 5(11), e15024.
  • Williams, M. A., Visser, T. A., Cunnington, R., & Mattingley, J. B. (2008). Attenuation of neural responses in primary visual cortex during the attentional blink.The Journal of Neuroscience, 28(39), 9890-9894.
  • Yamagishi, N., Goda, N., Callan, D. E., Anderson, S. J., & Kawato, M. (2005). Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex.Brain Research. Cognitive Brain Research, 25(3), 799-809.
  • Yuval-Greenberg, S., & Deouell, L. Y. (2009). The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades.Brain Topography, 22(1), 3-6.
  • Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades.Neuron, 58(3), 429-441.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0089-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.