Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2013 | 22 | 4 | 429–443

Article title

On minimal models for pure calculi of names

Authors

Title variants

Languages of publication

EN

Abstracts

EN
By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an empty name in the model, so we are able to construct a 3-valued matrix, while for the latter, for which an empty name is necessary, the respective matrices are 4-valued.

Year

Volume

22

Issue

4

Pages

429–443

Physical description

Dates

published
2013-12-01
online
2013-08-29

Contributors

author
  • Department of Foundation of Computer Science, Faculty of Philosophy, The John Paul II Catholic University of Lublin, Al. Racławickie 14, Lublin, Poland

References

  • Hodges, W., “Logical features of Horn Clauses”, pages 449–503 in: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1, Logical Foundations, Oxford University Press, Inc., New York, NY, 1993.
  • Ishimoto, A., “A propositional fragment of Lśniewski’s ontology”, Studia Logica, 36 (1977): 285–299. DOI: 10.1007/BF02120666
  • Johnson, F., “Three-membered domains for Aristotle’s syllogistic”, Studia Logica, 50 (1991): 181–187. DOI: 10.1007/BF00370181
  • Kulicki, P., “Remarks on axiomatic rejection in Aristotle’s syllogistic”, Studies in Logic and Theory of Knowledge, 5 (2002): 231–236.
  • Kulicki, P., “Minimalne empiryczne podstawy teorii bytu a modele dla logiki nazw”, Roczniki Filozoficzne, 58 (2010), 2: 29–39.
  • Kulicki, P., Aksjomatyczne systemy rachunku nazw (Axiomatic Systems of Calculus of Names), Redakcja Wydawnictw KUL, Lublin, 2011.
  • Kulicki, P., “An axiomatisation of the pure calculus of names”, Studia Logica, 100 (2012), 5: 921–946. DOI: 10.1007/s11225-012-9441-8
  • Łukasiewicz, J., Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Clarendon Press, Oxford, 1957.
  • McKinsey, J.C.C., “The decision problem for some classes of sentences without quantifiers”, The Journal of Symbolic Logic, 8 (1943): 61–76. DOI: 10.2307/2268172
  • Pietruszczak, A., Bezkwantyfikatorowy rachunek nazw. Systemy i ich metateoria (Quantifier-free Name Calculus. Systems and their Metatheory), Wydawnictwo Adam Marszałek, Toruń, 1991.
  • Pietruszczak, A. “Standardowe rachunki nazw z funktorem Leśniewskiego” (Pure calculi of names with Leśniewski’s functors) Acta Universitatis Nicolai Copernici, Logika, I (1991): 5–29.
  • Pietruszczak, A., “Cardinalities of models for pure calculi of names”, Reports on Mathematical Logic, 28 (1994): 87–102.
  • Słupecki, J., Z badań nad sylogistyką Arystotelesa, Wrocław, 1948.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-6290fc3a-d0d6-4795-8f0d-7038cbec0c4a
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.