Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Journal

2017 | 3 | 10 | 1001-1004

Article title

Chemical Composition and Particle Size Analysis of Kaolin

Content

Title variants

Languages of publication

EN

Abstracts

EN
The mineral and elemental composition, crystal structure and particle size distribution of kaolin clays have been determined to ascertain its industrial significance. The mineral composition is evaluated by X- Ray Fluorescence (XRF), crystalline structure by X-Ray Diffraction (XRD) and particle size distribution using low angle laser light scattering (LALLS) technique. The results shows the presence of eight elements expressed in percentages in form of their oxides as: SiO2, Al2O3, Fe2O3, MgO, CaO, K2O, TiO2 and P2O5. Five crystalline structures are revealed by XRD result. The particle size distribution shows that kaolin particles are mainly in the range of 25–35 µm, while few particles have size distribution varied between 0.4–0.75 μm. The report is found to be in agreement with other researchers.

Journal

Year

Volume

3

Issue

10

Pages

1001-1004

Physical description

Dates

published
2017-10-17

Contributors

author
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia
  • Universiti Tun Hussein Onn Malaysia

References

  • Jamo, H. U., & Abdu, S. G. (2014). Structural analysis and surface morphology kaolin. Science World Journal, 9(3), 29–30.
  • Lima, P. A., Angélica, R., & Neves, R. (2017). Dissolution kinetics of Amazonian metakaolin in hydrochloric acid. Clay Minerals, 52(1), 75–82. doi: 10.1180/claymin.2017.052.1.05
  • Kotal, M., & Bhowmick, A. K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Progress in Polymer Science, 51, 127–187. doi: 10.1016/j.progpolymsci.2015.10.001
  • Liu, P., Farzana, R., Rajarao, R., & Sahajwalla, V. (2017). Lightweight expanded aggregates from the mixture of waste automotive plastics and clay. Construction and Building Materials, 145, 283–291. doi: 10.1016/j.conbuildmat.2017.04.009
  • Jikan, S. S., Badarulzaman, N. A., Yahaya, S., & Adamu, A. D. (2017). Delamination of Kaolinite by Intercalation of Urea Using Milling. Materials Science Forum, 888, 136–140. doi: 10.4028/www.scientific.net/msf.888.136
  • Abou-El-Sherbini, K. S., Elzahany, E. A. M., Wahba, M. A., Drweesh, S. A., & Youssef, N. S. (2017). Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite. Applied Clay Science, 137, 33–42. doi: 10.1016/j.clay.2016.12.005
  • Sengupta, P., Saikia, P., & Borthakur, P. C. (2008). SEM-EDX characterization of an iron-rich kaolinite clay. Journal of Scientific & Industrial Research, 67, 812–818.
  • Nazir, M. S., Mohamad Kassim, M. H., Mohapatra, L., Gilani, M. A., Raza, M. R., & Majeed, K. (2016). Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites. Engineering Materials, 35–55. doi: 10.1007/978-981-10-1953-1_2
  • Tang, W., Song, L., Zhang, S., Li, H., Sun, J., & Gu, X. (2016). Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite. Journal of Materials Science, 52(1), 208–217. doi: 10.1007/s10853-016-0323-8
  • Sempeho, S. I., Kim, H. T., Mubofu, E., Pogrebnoi, A., Shao, G., & Hilonga, A. (2015). Dynamics of Kaolinite-Urea Nanocomposites via Coupled DMSO-Hydroxyaluminum Oligomeric Intermediates. Indian Journal of Materials Science, 2015, 1–10. doi: 10.1155/2015/920835
  • Franco, F., Cecila, J. A., Pérez-Maqueda, L. A., Pérez-Rodríguez, J. L., & Gomes, C. S. F. (2007). Particle-size reduction of dickite by ultrasound treatments: Effect on the structure, shape and particle-size distribution. Applied Clay Science, 35(1-2), 119–127. doi: 10.1016/j.clay.2006.07.004
  • Li, X., Liu, Q., Cheng, H., Zhang, S., & Frost, R. L. (2015). Mechanism of kaolinite sheets curling via the intercalation and delamination process. Journal of Colloid and Interface Science, 444, 74–80. doi: 10.1016/j.jcis.2014.12.039
  • Jillavenkatesa, A., Dapkunas, S. J., & Lum, L.-S. H. (2001, January). Particle Size Characterization. Retrieved from http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=850451
  • Toraman, O. Y., & Uçurum, M. (2017). Investigation of grinding-aid effect on the fineness, particle size distribution, surface area and color properties of calcite powder in dry vertical stirred mill. Chemistry Research Journal, 2(3), 56–65.
  • Malvern Instruments Limited (2012). A basic guide to particle characterization. Retrieved August 10, 2017, from http://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Particle%20Characterization%20Guide.pdf
  • Gates, W. P., Slade, P. G., Manceau, A., & Lanson, B. (2002). Site Occupancies by Iron in Nontronites. Clays and Clay Minerals, 50(2), 223–239. doi: 10.1346/000986002760832829
  • Aroke, U. O., & El-Nafaty, U. A. (2014). XRF, XRD and FTIR properties and characterization of HDTMA-Br surface modified organo-kaolinite clay. International Journal of Emerging Technology and Advance Engineering, 4(4), 817–825.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.desklight-7169cda0-da6d-4024-928d-6ce8d7bca210
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.