Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2017 | 106 | 171-180

Article title

W jaki sposób badać sejsmity? Przegląd metod badawczych

Content

Title variants

How to study seismites? A review of research methods

Languages of publication

PL

Abstracts

PL
Propagacja, wywołanej trzęsieniem ziemi, fali sejsmicznej w uwodnionych nieskonsolidowanych osadach drobnoziarnistych powodować może ich upłynnienie. W efekcie tego procesu powstać mogą warstwy zawierające struktury deformacyjne zwane sejsmitami. Zaproponowanie sejsmicznej genezy warstw zdeformowanych opiera się na zastosowaniu kryteriów rozpoznawczych. W tym celu konieczne jest: (1) przeprowadzenie analizy litofacjalnej osadów występujących w analizowanym profilu; (2) szczegółowe opisanie: deformacji, z uwzględnieniem ich rozmieszczenia w profilu i w obrębie zdeformowanej ławicy, rozciągłości poziomej, zróżnicowania przestrzennego, geometrii, tekstury i struktury osadów zaangażowanych w deformacje, osadów otaczających oraz zmiany rozkładu przestrzennego struktur deformacyjnych przy wykorzystaniu ścięcia poziomego i ukośnego; (3) wytypowanie struktur, które mogły powstać w efekcie upłynnienia i porównanie ich ze współcześnie tworzącymi się deformacjami związanymi ze wstrząsami sejsmicznymi; (4) rozpoznanie budowy geologicznej podłoża skalnego, w tym m.in. opis aktywności uskoków; (5) dyskusja innych mechanizmów, które mogły odpowiadać za powstanie deformacji; (6) określenie czasu powstania struktur deformacyjnych.
EN
Earthquake-triggered seismic wave propagation can induce liquefaction of water-saturated unconsolidated finegrained clastic sediments. As a result, layers with soft-sediment deformation structures called seismites can be formed. To propose a seismic origin of the layer, it should meet recognition criteria. Therefore, it is necessary to provide (1) a lithofacies analysis of the sediments in the studied section; (2) a detailed description of deformation structures including their position in the sedimentological log as well as within the deformed layer, lateral extent and continuity, geometry, texture and structure of both deformed and host sediments, spatial distribution and heterogenity of deformation structures in the plan view as well as an oblique view; (3) identification of structures that could have been formed during a liquefaction process and a comparison with those that recently occurred in tectonically active zones as an earthquake effect; (4) a subsurface geological structure recognition, particularly the presence and activity of faults; (5) discussion and elimination of all other possible triggers that could have caused sediment deformation; (6) estimation of the age of the deformation.

Year

Volume

106

Pages

171-180

Physical description

Dates

published
2017

Contributors

author
  • Uniwersytet im. Adama Mickiewicza, Instytut Geologii
  • Uniwersytet im. Adama Mickiewicza, Instytut Geologii

References

  • Alfaro P., Delgado J., Estévez A., Molina J., Moretti M., Soria J. 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences 91: 505-513.
  • Allen J.R.L. 1982. Sedimentary structures, their character and physical basis. Elsevier.
  • Allen J.R.L. 1986. Earthquake magnitude-frequency epicentral distance and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46: 67-75.
  • Allen J.R.L. 2003. Load Structures. W: G.V. Middleton (red.) Encyclopedia of sediments and sedimentary rocks. Kluwer Academic Publishers, Dordrecht: 413-414.
  • Alsop G.I., Marco S. 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology 33: 433-457.
  • Ambraseys N. 1988. Engineering seismology. Earthquake Engineering & Structural Dynamics 17: 1-115.
  • Brandes C., Winsemann J. 2013. Soft-sediment deformation structures in NW Germany caused by Late Pleistocene seismicity. International Journal of Earth Sciences 102: 2255-2274.
  • Brandes C., Winsemann J., Roskosch J., Meinsen J., Tsukamoto S., Frechen M., Tanner D.C., Steffen H., Wu P. 2012. Activity along the Osning Thrust in Central Europe during the Lateglacial: Ice-sheet and lithosphere interactions. Quaternary Science Reviews 38: 49-62.
  • Casagrande A. 1976. Liquefaction and cyclic deformation of sands: a critical review. Harvard Soil Mechanics Series 88: 1-26.
  • Crespellani T., Nardi R., Simoncini C. 1988. La liquefazione del terreno in condizioni sismiche. Zanichelli, Bologna.
  • Ezquerro L., Moretti M., Liesa C.L., Luzón A., Simón J.L. 2015. Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics 655: 191-205.
  • Galli P. 2000. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324: 169-187.
  • Grollimund B., Zoback M. 2000. Post glacial lithospheric flexure and induced stresses and pore pressure changes in the northern North Sea. Tectonophysics 327: 61-81.
  • Guiraud M., Plaziat J.-C. 1993. Seismites in the fluviatile Bima sandstones: identification of paleoseisms and discussion of their magnitudes in a Cretaceous synsedimentary strike-slip basin (Upper Benue, Nigeria). Tectonophysics 225: 493-522.
  • Hoffmann G., Reicherter K. 2012. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences 101: 351-363.
  • Jarosiński M. 2010. Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly 50: 303-321.
  • Jaroszewski W., Marks L., Radomski A. 1985. Słownik geologii dynamicznej. Wydawnictwa Geologiczne, Warszawa.
  • Lowe D.R. 1976. Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology 23: 285-308.
  • McCalpin J.P., Nelson A.R. 2009. Introduction to Paleoseismology. W: J.P. McCalpin (red.) Paleoseismology. Elsevier, Nowy Jork: 1-25.
  • Miall A.D. 1977. A review of the braided-river depositional environment. Earth Science Reviews 13: 1-62.
  • Moretti M., Van Loon A.J. 2014. Restrictions to the application of “diagnostic” criteria for recognizing ancient seismites. Journal of Palaeogeography 3: 162-173.
  • Moretti M., Alfaro P., Caselles O., Canas J.A. 1999. Modelling seismites with a digital shaking table. Tectonophysics 304: 369-383.
  • Mörner N.-A. 1991. Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophysics 188: 407-410.
  • Mörner N.-A. 2005. An interpretation and catalogue of paleoseismicity in Sweden. Tectonophysics 408: 265-307.
  • Mörner N.-A. 2013. Patterns in seismology and palaeoseismology, and their application in long-term hazard assessments - the Swedish case in view of nuclear waste management. Pattern Recognition in Physics 1: 75-89.
  • Obermeier S.F. 1996. Use of liquefaction-induced features for paleoseismic analysis – An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the locat. Engineering Geology 44: 1-76.
  • Obermeier S.F. 2009. Using Liquefaction-Induced and Other Soft-Sediment Features for Paleoseismic Analysis. W: J.P. McCalpin (red.) Paleoseismology. Elsevier, New York: 497-564.
  • Obermeier S.F., Olson S.M., Green R.A. 2005. Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology 76: 209-234.
  • Owen G. 1996. Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43: 279-293.
  • Owen G., Moretti M. 2008. Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in south-west Wales, UK. Terra Nova 20: 237-245.
  • Owen G., Moretti M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology 235: 141-147.
  • Owen G., Moretti M., Alfaro P. 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology 235: 133-140.
  • Papadopoulos G., Lefkopoulos G. 1993. Magnitude-distance relations for liquefaction in soil from earthquakes. Bulletin of the Seismological Society of America 83: 925-938.
  • Piotrowski A. 1999. Wpływ zróżnicowanego obciążenia strefy krawędziowej lądolodu na migrację soli. Przegląd Geologiczny 47:1016-1021.
  • Pisarska-Jamroży M., Weckwerth P. 2013. Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits. Sedimentology 60: 637-665.
  • Põldsaar K., Ainsaar L. 2015. Soft-sediment deformation structures in the Cambrian (Series 2) tidal deposits (NW Estonia): Implications for identifying endogenic triggering mechanisms in ancient sedimentary record. Palaeoworld 24: 16-35.
  • Quigley M.C., Hughes M.W., Bradley B.A., van Ballegooy S., Reid C., Morgenroth J., Horton T., Duffy B., Pettinga J.R. 2016. The 2010-2011 Canterbury Earthquake Sequence: Environmental effects, seismic triggering thresholds and geologic legacy. Tectonophysics 673: 228-274.
  • Rodríguez-López J.P., Meléndez N., Soria A.R., Liesa C.L., Van Loon A.J. 2007. Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, mid-Cretaceous, eastern Spain). Sedimentary Geology 201: 461-484.
  • Rossetti D.D.F. 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brazil: Evidence for palaeoseismicity. Sedimentology 46: 1065-1081.
  • Seilacher A. 1969. Fault-graded beds interpreted as seismites. Sedimentology 13: 155-159.
  • Shanmugam G. 2016. The seismite problem. Journal of Palaeogeography 5: 318-362.
  • Tian H.S., Van Loon A.J., Wang H.L., Zhang S.H., Zhu J.W. 2016. Seismites in the Dasheng Group: New evidence of strong tectonic and earthquake activities of the Tanlu Fault Zone. Science China Earth Sciences 59: 601-618.
  • Tian Y., Zhong J.H., Wang S.B., Tao H.S., Liu S.G., Li Y., Ni L. T. 2015. Seismites and their geological significances of the Triassic Yanchang Formation in Fuxian exploration area, Ordos Basin. Journal of Palaeogeography 17: 541-552.
  • Tuttle M.P., Villamor P., Almond P., Bastin S., Bucci G., Langdridge R., Hardwick C.M. 2017. Liquefaction induced during the 2010–2011 Canterbury, New Zealand, Earthquake Sequence and Lessons Learned for the Study of Paleoliquefaction Features. Seismological Research Letters 88: 1403-1414.
  • Van Loon A.J. 2009. Soft-sediment deformation structures in siliciclastic sediments : an overview. Geologos 15: 3-55.
  • Van Loon A.J., Maulik P. 2011. Abraded sand volcanoes as a tool for recognizing paleo-earth¬quakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology 238: 145-155.
  • Van Loon A.J., Pisarska-Jamroży M. 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology 300: 1-10.
  • Van Loon A.J., Pisarska-Jamroży M., Nartišs M., Krievāns M., Soms J. 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography 5: 363-380.
  • Van Vliet-Lanoë B., Bonnet S., Hallegouët B., Laurent M. 1997. Neotectonic and seismic activity in the Armorican and Cornubian Massifs: Regional stress field with glacio-isostatic influence? Journal of Geodynamics 24: 219-239.
  • Van Vliet-Lanoë B., Magyari A., Meilliez F. 2004. Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Change 43: 103-127.
  • Wojewoda J., Rauch M., Kowalski A. 2016. Synsedimentary seismotectonic features in Triassic and Cretaceous sediments of the Intrasudetic Basin (U Devěti křížů locality) – regional implications. Geological Quarterly 60: 3553-64.
  • Wu P., Johnston P. 2000. Can deglaciation trigger earthquakes in N. America? Geophysical Research Letters 27: 1323-1326.
  • Zieliński T. 1992. Moreny czołowe Polski północno-wschodniej – osady i warunki sedymentacji. Prace Nauk. Uniw. Śląskiego, Katowice.
  • Zieliński T. 1995. Kod litofacjalny i litogenetyczny – konstrukcja i zastosowanie. W: E. Mycielska-Dowgiałło, J. Rutkowski (red.) Badania osadów czwartorzędowych. Wybrane metody i interpretacja wyników. Uniwersytet Warszawski, Warszawa: 220-235.
  • Zieliński T. 2014. Sedymentologia. Osady rzek i je¬zior. Wyd. Nauk. UAM, Poznań.
  • Zieliński T., Pisarska-Jamroży M. 2012. Jakie cechy litologiczne osadów warto kodować, a jakie nie? Przegląd Geologiczny 60: 387-397.
  • Zoback M.D., Grollimund B. 2001. Impact of deglaciation on present-day intraplate seismicity in Eastern North America and Western Europe. Comptes Rendus de l’Academie de Sciences – Serie IIa: Sciences de La Terre et Des Planetes 333: 23-34.

Document Type

Publication order reference

Identifiers

ISSN
0065-1249

YADDA identifier

bwmeta1.element.desklight-f96876d3-965a-4c8a-98e2-8f37b44f9b5b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.