Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


System messages
  • Session was invalidated!
2015 | 43 | 1 | 7-20

Article title

Significance of Discriminant Analysis in Prediction of Pregnancy in IVF Treatment

Title variants

Languages of publication

EN

Abstracts

EN
Many factors play an important role in prediction of infertility treatment outcome (for example, female age and quality of oocytes or embryos are the most important prognostic factors concerning positive IVF outcome). The purpose of this study was to identify a set of variables that could fulfill criteria for prediction of pregnancy in IVF patients through the application of data mining – using the discriminant analysis method. The principle of this method is to establish a set of rules that allows one to place multi-dimensional objects into one of two analyzed groups (pregnant or not pregnant). Six hundred and ten IVF cycles were included in the analysis and the following variables were taken into consideration: female age, number and quality of retrieved oocytes, number and quality of embryos, number of transferred embryos, and outcome of treatment. Discriminant analysis allowed for the creation of a model with a 51.22% correctness of prediction to achieve pregnancy during IVF treatment and with 74.07% correctly predicted failure of pregnancy. Therefore, the created model is more suitable for the prediction of a negative outcome (lack of pregnancy) during IVF treatment and offers an option for adjustments to be made during infertility treatment.

Keywords

Publisher

Year

Volume

43

Issue

1

Pages

7-20

Physical description

Dates

published
2015-12-01
online
2016-01-06

Contributors

  • Deartment of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Deartment of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Deartment of Statistics and Medical Informatics, Medical University of Bialystok, Poland
author
  • Deartment of Statistics and Medical Informatics, Medical University of Bialystok, Poland
  • Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
author
  • Acacio Fertility Center, Laguna Niguel, California, USA
  • Deartment of Statistics and Medical Informatics, Medical University of Bialystok, Poland

References

  • Alunni, V., du Jardin, P., Nogueira, L., Buchet, L., & Quatrehomme, G. (2015). Comparing discriminant analysis and neural network for the determination of sex using femur head measurements. Forensic Science International, 253, 81–87. DOI:10.1016/j.forsciint.2015.05.023[WoS][Crossref]
  • De Clercq, E. M., Leta, S., Estrada-Peña, A., Madder, M., Adehan, S., & Vanwambeke, S. O. (2015). Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: Comparing datasets and modelling algorithms. Preventive Veterinary Medicine, 118(1), 8–21. DOI:10.1016/j.prevetmed.2014.10.015[Crossref][WoS]
  • De Leon, T. B., Linscombe, S., Gregorio, G., & Subudhi, P. K. (2015). Genetic variation in Southern USA rice genotypes for seedling salinity tolerance. Frontiers in Plant Science, 6:374. DOI:10.3389/fpls.2015.00374[WoS][Crossref]
  • Dobosz, M. (2001). Wspomagana komputerowo statystyczna analiza wyników badań. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  • Fanos, V., Noto, A., Xanthos, T., Lussu, M., Murgia, F., Barberini, L., Finco, G., et al. (2014). Metabolomics Network Characterization of Resuscitation after Normocapnic Hypoxia in a Newborn Piglet Model Supports the Hypothesis That Room Air Is Better. BioMed Research International, 2014, 731620. DOI:10.1155/2014/731620
  • Gajjar, K., Ahmadzai, A. A., Valasoulis, G., Trevisan, J., Founta, C., Nasioutziki, M., Loufopoulos, A., et al. (2014). Histology Verification Demonstrates That Biospectroscopy Analysis of Cervical Cytology Identifies Underlying Disease More Accurately than Conventional Screening: Removing the Confounder of Discordance. PLoS ONE, 9(1). DOI:10.1371/journal.pone.0082416[WoS][Crossref]
  • Gnoth, C., Schuring, A. N., Friol, K., Tigges, J., Mallmann, P., & Godehardt, E. (2008). Relevance of anti-Mullerian hormone measurement in a routine IVF program. Human Reproduction, 23(6), 1359–1365. DOI:10.1093/humrep/den108[Crossref]
  • Huang, Z. L., Chen, X. P., Zhao, Q.Y., Zheng, Y. B., Peng, L., Gao, Z. L., & Zhao, Z. X. (2015). An albumin, collagen IV, and longitudinal diameter of spleen scoring system superior to APRI for assessing liver fibrosis in chronic hepatitis B patients. International Journal of Infectious Diseases, 31, 18–22. DOI:10.1016/j.ijid.2014.10.030[WoS][Crossref]
  • Kim, S. C., Kim, M. K., Kim, Y. H., Ahn, S. A., Kim, K. H., Kim, K., Kim, W. K., et al. (2014). Differential levels of L-homocysteic acid and lysophosphatidyl-choline (16:0) in sera of patients with ovarian cancer. Oncology Letters, 8(2), 566–574. DOI:10.3892/ol.2014.2214[WoS]
  • Lee, U. Y., Kim, I. B., & Kwak, D. S. (2015). Sex determination using discriminant analysis of upper and lower extremity bones: New approach using the volume and surface area of digital model. Forensic Science International, 253, 135e1-135e4. DOI:10.1016/j.forsciint.2015.05.017[Crossref][WoS]
  • Maeda, N., Urabe, Y., Murakami, M., Itotani, K., & Kato, J. (2015). Discriminant analysis for predictor of falls in stroke patients by using the Berg Balance Scale. Singapore Medical Journal, 56(5), 280–283. DOI:10.11622/smedj.2015033[Crossref]
  • Milewska, A. J., Górska, U., Jankowska, D., Milewski, R., & Wołczyński, S. (2011). The use of the basket analysis in a research of the process of hospitalization in the gynecological ward. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 83–98.
  • Milewska, A. J., Jankowska, D., Citko, D., Więsak, T., Acacio, B., & Milewski, R. (2014). The use of principal component analysis and logistic regression in prediction of infertility treatment outcome. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 39(52), 7–23.
  • Milewska, A. J., Jankowska, D., Cwalina, U., Więsak, T., Morgan, A., & Milewski, R. (2013). Analyzing outcome of intrauterine insemination treatment by application of Cluster Analysis or Kohonen Neural Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 7–25.
  • Milewska, A. J., Jankowska, D., Górska, U., Milewski, R., & Wołczyński, S. (2012). Graphical representation of the relationships between qualitative variables concerning the process of hospitalization in the gynecological ward using correspondence analysis. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 29(42), 7–25.
  • Milewski, R., Jamiołkowski, J., Milewska, A. J., Domitrz, J., Szamatowicz, J., & Wołczyński, S. (2009). Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial neural networks among patients of the Department of Reproduction and Gynecological Endocrinology. Ginekologia Polska, 80(12), 900–906.
  • Milewski, R., Malinowski, P., Milewska, A. J., Czerniecki, J., Ziniewicz, P., & Wołczyński, S. (2011). Nearest neighbor concept in the study of IVF ICSI/ET treatment effectiveness. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 25(38), 49–57.
  • Milewski, R., Milewska, A. J., Czerniecki, J., Leśniewska, M., & Wołczyński, S. (2013a). Analysis of the demographic profile of patients treated for infertility using assisted reproductive techniques in 2005–2010. Ginekologia Polska, 84(7), 609–614.
  • Milewski, R., Milewska, A. J., Więsak, T., & Morgan, A. (2013b). Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using in the in vitro fertilization treatment Networks. Studies in Logic, Grammar and Rhetoric. Logical, Statistical and Computer Methods in Medicine, 35(48), 39–48.
  • Pappas, A., Chaiworapongsa, T., Romero, R., Korzeniewski, S. J., Cortez, J. C., Bhatti, G., Gomez-Lopez, N. et al. (2015). Transcriptomics of Maternal and Fetal Membranes Can Discriminate between Gestational-Age Matched Preterm Neonates with and without Cognitive Impairment Diagnosed at 18–24 Months. PLoS ONE, 10(3). DOI:10.1371/journal.pone.0118573[Crossref][WoS]
  • Pires, L., Nogueira, M. S., Pratavieira, S., Moriyama, L. T., & Kurachi, C. (2014). Time-resolved fluorescence lifetime for cutaneous melanoma detection. Biomedical Optics Express, 5(9), 3080–3089. DOI:10.1364/BOE.5.003080[Crossref][WoS]
  • Prentice, P., Koulman, A., Matthews, L., Acerini, C. L., Ong, K. K., & Dunger, D. B. (2015). Lipidomic Analyses, Breast- and Formula-Feeding, and Growth in Infants. The Journal of Pediatrics, 166, 276–281.[WoS]
  • Radwan, J., & Wołczyński, S. (Eds.). (2011). Niepłodność i rozród wspomagany. Poznań, Polska: Termedia Wydawnictwa Medyczne.
  • Singh, N., Malik, E., Banerjee, A., Chosdol, K., Sreenivas, V., & Mittal, S. (2013). Anti-Mullerian Hormone: Marker for Ovarian Response in Controlled Ovarian Stimulation for IVF Patients”: A First Pilot Study in the Indian Population. The Journal of Obstetrics and Gynecology of India, 63(4), 268–272. DOI:10.1007/s13224-012-0318-6[Crossref]
  • Stanisz, A. (2007). Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, Tom 3. Analizy wielowymiarowe. Kraków, Polska: StatSoft.
  • Veeck, L. L. (1998). An atlas of human gametes and conceptuses. New York: Parthenon Publishing Group.
  • Vilke, A., Bilskiene, D., Šaferis, V., Gedminas, M., Bieliauskaite, D., Tamašauskas, A., & Macas, A. (2014). Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury. Medicina, 50(5), 263–268. DOI:10.1016/j.medici.2014.10.001[Crossref][WoS]
  • Wegdam, W., Moerland, P. D., Meijer, D., de Jong, S. M., Hoefsloot, H. C. J., Kenter, G. G., Buist, M. R., et al. (2012). A critical assessment of SELDITOF-MS for biomarker discovery in serum and tissue of patients with an ovarian mass. Proteome Science, 10:45.[WoS][Crossref]
  • Xia, L., Zhao, X., Sun, Y., Hong, Y., Gao, Y., & Hu, S. (2014). Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. International Journal of Clinical and Experimental Pathology, 7(10), 7220–7229.
  • Zhao, J., Zhang, Q., Wang, Y., & Li, Y. (2014). Endometrial pattern, thickness and growth in predicting pregnancy outcome following 3319 IVF cycle. Reproductive BioMedicine Online, 29(3), 291–298. DOI:10.1016/j.rbmo.2014.05.011[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_1515_slgr-2015-0038
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.