Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2013 | 4 | 4 | 261-275

Article title

ESTIMATION OF BANKING EFFICIENCY IN THE CZECH REPUBLIC: DYNAMIC DATA ENVELOPMENT ANALYSIS

Authors

Title variants

Languages of publication

EN

Abstracts

EN
This paper estimates the efficiency of Czech commercial banks during the period 2001 to 2011. We applied Dynamic Data Envelopment Analysis (DEA) to data from Czech commercial banks. The DEA measures the relative efficiency of a homogeneous set of decision-making units (DMUs) in their use of multiple inputs to produce multiple outputs. Dynamic Data Envelopment Analysis is a new approach which estimates the performance of a group of DMUs during several periods of time. The results of Dynamic DEA models showed that the average efficiency computed under the assumption of constant returns to scale reached a value of 86.7% and that the average efficiency estimated under the assumption of variable returns to scale was 95.7%. Efficiency slightly increased in the period analysed. The result of scale efficiency found that the main source of inefficiency is the inaccurate size of the biggest banks and also the excess client deposits managed by Czech banks.

Publisher

Year

Volume

4

Issue

4

Pages

261-275

Physical description

Dates

published
2013-12-01
online
2014-01-22

Contributors

  • SilesianUniversity in Opava, School of BusinessAdministration in Karviná, Department of Finance,Univerzitní námestí 1934/3, 733 40 Karviná, Czech Republic

References

  • Andries, A. M., Cocris, V. (2010). A Comparative Analysis of the Efficiency of Romanian Banks. Romanian Journal of Economic Forecasting, 4, 54-75.
  • Banker, R. D., Charnes, A., Cooper, W.W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30, 1078-1092.[Crossref]
  • Bonin, J. P., Hasan, I., Wachtel, P. (2005). Privatization matters: Bank efficiency in transition countries. Journal of Banking and Finance, 29, 2155-2178.
  • Charnes A., Cooper, W.W., Lewin, A.Y., Seiford L. M. (1995). Data Envelopment Analysis: Theory, Methodology and Applications. New York: Springer-Verlag.
  • Charnes, A., Cooper, W.W., Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2, 429-444.[Crossref]
  • Costa, E. M., Ramos, F. S., Souza, H. R. (2012). Static versus Dynamic DEA in Federal Higher Education Institutions - IFES. XVII Encontro Regional de Economia. ANPEC Regional, Trabalho Completo.
  • Fare, R., Grosskopf, S. (1996). Intertemporal Production Frontiers: with Dynamic DEA.Norwell: Kluwer.
  • Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society (Series A), 120, 2, 253-281.
  • Fried, H. O., Lovell, C.A. K. (1994). Enhancing the Performance of Credit Unions: The Evolution of a Methodology. Recherches Economiques de Louvain, 60, 4, 421-447.
  • Fries, S., Taci, A. (2005). Cost Efficiency of Banks in Transition: Evidence from 289Banks in 15 Post-communist Countries. Journal of Banking and Finance, 29, 55-81.
  • Jablonský, J. (2012). Data envelopment analysis models with network structure. In Ramík, J., Stavárek, D. (eds.), Proceedings of the 30th International Conference Mathematical Methods in Economics 2012. Karviná: Silesian University, School of Business Administration.
  • Kamecka, M. (2010). Bank efficiency in CEE. Doctoral thesis. Vienna: WU Vienna University of Economics and Business.
  • Kawaguchi, H., Tone, K., Tsutsui, M. (2013). Estimation of the Efficiency of Japanese Hospitals Using a Dynamic and Network Data Envelopment Analysis Model. In Proceedings ofWorkshop 2013 on Dynamic and Network DEA. Tokio:National Graduate Institute for Policy Studies.
  • Lotfi, F. H., Poursakhi, N. (2012). A Mathematical Model for Dynamic Efficiency Using Desirable and Undesirable Input-Output. Applied Mathematical Sciences, 6, 141-151.
  • Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos de Estadistica, 4, 209-242.
  • Matoušek, R., Taci, A. (2005). Efficiency in Banking: Empirical Evidence from the Czech Republic. Economic Change and Restructuring, 37, 225-244.
  • Otýpková, M. (2012). Financní stabilta CR v podmínkách soucasného ekonomického systému. Acta academica karviniensia, 3, 77-88.
  • Sathy, M. (2003). Efficiency of Banks in a Developing Economy: The Case of India.European Journal of Operational Research, 148, 662-671.
  • Seiford, L. M., Thrall, R. M. (1990). Recent developments in DEA: the mathematical programming approach to frontier analysis. Journal of Econometrics, 46, 7-38.[Crossref]
  • Sengupta, J. K. (1996). Systematic measures of dynamic Farrell Efficiency. Applied Economics Letters, 3, 91-94.[Crossref]
  • Stanek, R. (2010). Efektivnost ceského bankovního sektoru v letech 2000-2009. In Konkurenceschopnost a stabilita. Brno: Masaryk University.
  • Stanícková, M., Skokan, K. (2012). Evaluation of Visegrad Countries Efficiency in Comparison with Austria and Germany by Selected Data Envelopment Analysis Models. In Proceedings of the 4th WSEAS World Multiconference on Applied Economics, Business and Development (AEBD ’12). Recent Researches in Business and Economics. Porto: WSEAS.
  • Stavárek, D. (2005). Restrukturalizace bankovních sektoru a efektivnost bank v zemích Visegrádské skupiny. Karviná: Silesian University, School of Business Administration.
  • Stavárek, D., Poloucek, S. (2004). Efficiency and Profitability in the Banking Sector.In Poloucek, S. (ed.), Reforming the Financial Sector in Central European Countries.Hampshire: Palgrave Macmillan Publishers.
  • Stavárek, D., Repková, I. (2012). Efficieny in the Czech banking industry: A nonparametric approach. Acta Universitatis Agriculturae et Silviculturae Mendeleianae Brunensis, 60, 357-366.
  • Sufian, F. (2007). The Efficiency of Islamic Banking Industry: a non-parametric analysis with non-discretionary input variable. Islamic Economic Studies, 14, 1-2, 53-78.
  • Taci, A., Zampieri, E. (1998). Efficiency in the Czech Banking Sector. CERGE-EI Discussion Paper 4, Prague: CERGE-EI.
  • Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis.European Journal of Operational Research, 130, 498-509.
  • Tone, K., Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38, 145-156.
  • Weill, L. (2003). Banking efficiency in transition economies: The role of foreign ownership.Economics of Transition, 11, 569-592.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.doi-10_2478_danb-2013-0014
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.