Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2024 | 12 | 59 | 102-119

Article title

Origin and Evolution of Malmquist Productivity Index: Review of the Literature

Content

Title variants

Languages of publication

Abstracts

EN
The aim of this review was to present research work on the development of the Malmquist index (MI) in various aspects based on the Data Envelopment Analysis (DEA) method. The MI is one of the three methods of dynamic analysis and also the main one, as it is the most commonly used to measure productivity changes. However, over the years, from being a simple productivity index like the models within the DEA method, it has become a more complex and useful index as it has seen many developments and extensions. Modifications and developments of the MI have taken place in many directions. A review of MI studies from 1990 to 2025 shows that the authors considered various aspects of the MI: Alternative ways of decomposing, different ways of measuring, different types of efficiency, different nature of data and variables and network structure or combined dynamic analysis methods into a single framework. The direction of changes and modifications of the MI can be divided into three groups: Adapting DEA solutions within the MI, presenting new MI solutions without being inspired by the DEA method and combining two methods of dynamic analysis into one framework.

Year

Volume

12

Issue

59

Pages

102-119

Physical description

Dates

published
2025

Contributors

References

  • Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics, 6(1), 21–37. https://doi.org/10.1016/0304-4076(77)90052-5
  • Afsharian, M., Ahn, H., & Harms, S. G. (2018). A Non-Convex Meta-Frontier Malmquist Index for Measuring Productivity Over Time. IMA Journal of Management Mathematics, 29(4), 377–392. https://doi.org/10.1093/imaman/dpx007
  • Althin, R. (2001). Measurement of Productivity Changes: Two Malmquist Index Approaches. Journal of Productivity Analysis, 16(2), 107–128. https://doi.org/10.1023/A:1011682625976
  • Álvarez, I. C., Barbero, J., & Zofío, J. L. (2020). A Data Envelopment Analysis Toolbox for MATLAB. Journal of Statistical Software, 95(3), 1–49. https://doi.org/10.18637/jss.v095.i03
  • Amirteimoori, A., Emrouznejad, A., & Khoshandam, L. (2013). Classifying Flexible Measures in Data Envelopment Analysis: A Slack-Based Measure. Measurement, 46(10), 4100–4107. https://doi.org/10.1016/j.measurement.2013.08.019
  • Asmild, M., Paradi, J. C., Aggarwall, V., & Schaffnit, C. (2004). Combining DEA Window Analysis With the Malmquist Index Approach in a Study of the Canadian Banking Industry. Journal of Productivity Analysis, 21(1), 67–89. https://doi.org/10.1023/B:PROD.0000012453.91326.ec
  • Balk, B. M. (1993). Malmquist Productivity Indexes and Fisher Ideal Indexes: Comment. The Economic Journal, 103(418), 680–682. https://doi.org/10.2307/2234540
  • Balk, B. M. (2001). Scale Efficiency and Productivity Change. Journal of Productivity Analysis, 15(3), 159–183. https://doi.org/10.1023/A:1011117324278
  • Balk, B. M., Barbero, J., & Zofío, J. L. (2020). A Toolbox for Calculating and Decomposing Total Factor Productivity Indices. Computers & Operations Research, 115, 104853. https://doi.org/10.1016/j.cor.2019.104853
  • Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078
  • Bansal, P., & Mehra, A. (2022). Malmquist-Luenberger Productivity Indexes for Dynamic Network DEA With Undesirable Outputs and Negative Data. RAIRO - Operations Research, 56(2), 649–687. https://doi.org/10.1051/ro/2022023
  • Benitez, R., Coll Serrano, V., & Bolós, V. (2021). deaR-Shiny: An Interactive Web App for Data Envelopment Analysis. Sustainability, 13, 6774. https://doi.org/10.3390/su13126774
  • Berg, S. A., Førsund, F. R., & Jansen E. S. (1992). Malmquist Indices of Productivity Growth During the Deregulation of Norwegian Banking, 1980–89. Scandinavian Journal of Economics (Supplement), 94, 211–228. https://doi.org/10.2307/3440261
  • Bjurek, H. (1996). The Malmquist Total Factor Productivity Index. The Scandinavian Journal of Economics, 98, 303. https://doi.org/10.2307/3440861
  • Brennan, S., Haelermans, C., & Ruggiero, J. (2014). Nonparametric Estimation of Education Productivity with an Application to Dutch Schools. European Journal of Operational Research, 234(3), 809. https://doi.org/10.1016/j.ejor.2013.10.030
  • Brzezicki, Ł. (2017). Efektywność Działalności Dydaktycznej Polskiego Szkolnictwa Wyższego. Wiadomości Statystyczne. The Polish Statistician, 62(11), 56–73. https://doi.org/10.5604/01.3001.0014.1066
  • Brzezicki, Ł., & Łącka, I. (2022). Cost Efficiency of Administrative Service in Public Higher Education in Poland. Scientific Papers of Silesian University of Technology – Organization and Management, 156, 81–98. http://dx.doi.org/10.29119/1641-3466.2022.156.6
  • Brzezicki, Ł. (2025). Different Paths for Modification of the Malmquist Index: A Review of the Literature (Working Paper 1/2025). http://dx.doi.org/10.13140/RG.2.2.20886.05449
  • Camanho, A. S., & Dyson, R. G. (2006). Data Envelopment Analysis and Malmquist Indices for Measuring Group Performance. Journal of Productivity Analysis, 26(1), 35–49. https://doi.org/10.1007/s11123-006-0004-8
  • Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica, 50, 1393–1414. https://doi.org/10.2307/1913388
  • Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and Distance Functions. Journal of Economic Theory, 70(2), 407–419. https://doi.org/10.1006/jeth.1996.0096
  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2, 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
  • Chen, Y. (2003). A Non-Radial Malmquist Productivity Index With an Illustrative Application to Chinese Major Industries. International Journal of Production Economics, 83(1), 27–35. https://doi.org/10.1016/S0925-5273(02)00267-0
  • Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51(3), 229–240. https://doi.org/10.1006/jema.1997.0146
  • Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis: A Comprehensive Text With Models, Applications, References and DEA-Solver Software. New York: Springer.
  • Daraio, C., Kerstens, K. H. J., Nepomuceno, T. C. C., & Sickles, R. (2019). Productivity and Efficiency Analysis Software: An Exploratory Bibliographical Survey of The Options. Journal of Economic Surveys, 33(1), 85–100. https://doi.org/10.1111/joes.12270
  • Daraio, C., Kerstens, K., Nepomuceno, T., & Sickles, R. C. (2020). Empirical Surveys of Frontier Applications: A Meta-Review. International Transactions in Operational Research, 27, 709–738. https://doi.org/10.1111/itor.12649
  • Ding, L., Yang, Y., Wang, W., & Calin, A. C. (2019). Regional Carbon Emission Efficiency and its Dynamic Evolution in China: A Novel Cross Efficiency-Malmquist Productivity Index. Journal of Cleaner Production, 241, 118260. https://doi.org/10.1016/j.jclepro.2019.118260
  • Dorri, N. M., & Rostamy-Malkhalifeh, M. (2017). Malmquist Productivity Index in Ratio Data Envelopment Analysis. Data Envelopment Analysis and Decision Science, 2017, 7–13.
  • Emrouznejad, A., & Thanassoulis, E. (2010). Measurement of Productivity Index With Dynamic DEA. International Journal of Operational Research, 8(2), 247–260. https://doi.org/10.1504/IJOR.2010.033140
  • Emrouznejad, A., Rostamy-Malkhalifeh, M., Hatami-Marbini, A., Tavana, M., & Aghayi, N. (2011). An Overall Profit Malmquist Productivity Index with Fuzzy and Interval Data. Mathematical and Computer Modelling, 54(11), 2827–2838. https://doi.org/10.1016/j.mcm.2011.07.003
  • Emrouznejad, A., Tavana M., & Hatami-Marbini, A. (2014). The State of the Art in Fuzzy Data Envelopment Analysis. In A. Emrouznejad & M. Tavana (Eds.), Performance Measurement with Fuzzy Data Envelopment Analysis (pp. 1–45). Berlin: Springer. https://doi.org/10.1007/978-3-642-41372-8_1
  • Emrouznejad, A., Brzezicki, Ł., & Lu, C. (2025). The Development and Evolution of Slacks-Based Measure Models in Data Envelopment Analysis: A Comprehensive Review of the Literature. Journal of Economic Surveys. https://doi.org/10.1111/joes.12682
  • Seyed Esmaeili, F. S., Rostamy-Malkhalifeh, M., & Hosseinzadeh Lotfi, F. (2022). Interval Network Malmquist Productivity Index for Examining Productivity Changes of Insurance Companies under Data Uncertainty: A Case Study. Journal of Mathematical Extension, 16(8), 1–7. https://doi.org/10.30495/JME.2022.1503
  • Essid, H., Ouellette, P., & Vigeant, S. (2014). Productivity, Efficiency, and Technical Change of Tunisian Schools: A Bootstrapped Malmquist Approach with Quasi-Fixed Inputs. Omega, 42(1), 88–97. https://doi.org/10.1016/j.omega.2013.04.001
  • Fallahnejad, R., Mozaffari, M. R., Wanke, P. F., & Tan, Y. (2024). Nash Bargaining Game Enhanced Global Malmquist Productivity Index for Cross-Productivity Index. Games, 15(1), 3. https://doi.org/10.3390/g15010003
  • Färe, R., & Lovell, C. A. K. (1978). Measuring the Technical Efficiency of Production. Journal of Economic Theory, 19(1), 150–162. https://doi.org/10.1016/0022-0531(78)90060-1
  • Färe, R., Grosskopf, S., & Lovell, C. A. K. (1985). The Measurement of Efficiency of Production. Dordrecht: Springer.
  • Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1989a). Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach (Discussion Paper 89–3). Department of Economics, Southern Illinois University, Carbondale.
  • Färe, R., Grosskopf, S., Lovell, C., & Pasurka, C. (1989b). Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach. The Review of Economics and Statistics, 71, 90–98. https://doi.org/10.2307/1928055
  • Färe, R., Grosskopf, S., Yaisawarng, S., Li, S. K., & Wang, Z. (1990). Productivity Growth in Illinois Electric Utilities. Resources and Energy, 12(4), 383–398. https://doi.org/10.1016/0165-0572(90)90030-M
  • Färe, R., & Grosskopf, S. (1992). Malmquist Productivity Indexes and Fisher Ideal Indexes. The Economic Journal, 102(410), 158–160. https://doi.org/10.2307/2234861
  • Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1992). Productivity Changes in Swedish Pharamacies 1980–1989: A Non-Parametric Malmquist Approach. The Journal of Productivity Analysis, 3, 85–101. https://doi.org/10.1007/BF00158770
  • Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1994a). Productivity Change in Swedish Hospitals: A Malmquist Output Index Approach. In: A. Charnes, W. W. Cooper, A. Y. Lewin, & M. L. Seiford (Eds.), Data Envelopment Analysis: Theory, Methodology and Applications (pp. 253–272). Boston: Kluwer Academic Publishers.
  • Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994b). Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. The American Economic Review, 84(1), 66–83.
  • Färe, R., Grosskopf, S., & Roos, P. (1995). Productivity and Quality Changes in Swedish Pharmacies. International Journal of ProductionEconomics, 39(1), 137– 144. https://doi.org/10.1016/0925-5273(94)00063-G
  • Färe, R., & Grosskopf, S. (1996). Intertemporal Production Frontiers: With Dynamic DEA. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-1816-0
  • Färe, R., Grifell-Tatje, E., Grosskopf, S., & Lovell, C.A.K. (1997). Biased Technical Change and the Malmquist Productivity Index. Scandinavian Journal of Economics, 99(1), 119–127. https://doi.org/10.1111/1467-9442.00051
  • Färe, R., Grosskopf, S., & Roos, P. (1998). Malmquist Productivity Indexes: A Survey of Theory and Practice. In R. Färe, S. Grosskopf, R. R. Russell (Eds.), Index Numbers: Essays in Honour of Sten Malmquist. Dordrecht: Springer. https://doi.org/10.1007/978-94-011-4858-0_4
  • Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 35–49. https://doi.org/10.1016/S0038-0121(99)00012-9
  • Färe, R., Førsund, F. R., Grosskopf, S., Hayes, K., & Heshmati, A. (2001). A Note on Decomposing the Malmquist Productivity Index by Means of Subvector Homotheticity. Economic Theory, 17(1), 239–245. https://doi.org/10.1007/PL00004101
  • Färe, R., & Zelenyuk, V. (2003). On Aggregate Farrell Efficiencies. European Journal of Operational Research, 146(3), 615–620. https://doi.org/10.1016/S0377-2217(02)00259-X
  • Färe, R., Grosskopf, S., Forsund, F. R., Hayes, K., & Heshmati, A. (2006). Measurement of Productivity and Quality in Non‐Marketable Services. Quality Assurance in Education, 14(1), 21–36. https://doi.org/10.1108/09684880610643593
  • Färe, R., Grosskopf, S., & Margaritis, D. (2008). Efficiency and Productivity: Malmquist and More. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The Measurement of Productive Efficiency and Productivity Change (pp. 522–621). Oxford: Oxford University Press.
  • Färe, R., Grosskopf, S., Margaritis, D., & Weber, W. L. (2018). Dynamic Efficiency and Productivity. In E. Grifell-Tatjé, C. A. K. Lovell, & R. C. Sickles (Eds.), The Oxford Handbook of Productivity Analysis (pp. 183–210). New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190226718.013.5
  • Färe, R., & Zelenyuk, V. (2021). On Aggregation of Multi-Factor Productivity Indexes. Journal of Productivity Analysis, 55(2), 107–133. https://doi.org/10.1007/s11123-021-00598-w
  • Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of Royal Statistical Society, Series A, 120(III), 253–290. https://doi.org/10.2307/2343100
  • Fixler, D., & Zieschang, K. D. (1992). Incorporating Ancillary Measures of Process and Quality Change into a Superlative Productivity Index. Journal of Productivity Analysis, 2(4), 245–267. https://doi.org/10.1007/BF00156469
  • Førsund, F. R. (1998). The Rise and Fall of Slacks: Comments on Quasi-Malmquist Productivity Indices. Journal of Productivity Analysis, 10(1), 21–34. https://doi.org/10.1023/A:1018342214700
  • Førsund, F. R. (2016). Productivity Interpretations of the Farrell Efficiency Measures and the Malmquist Index and its Decomposition. In: J. Aparicio, C. Lovell, & J. Pastor, (Eds.), Advances in Efficiency and Productivity (pp. 121–147). Cham: Springer.
  • Fukuyama, H., & Weber, W. L. (2001). Efficiency and Productivity Change of Non-Life Insurance Companies in Japan. Pacific Economic Review, 6, 129– 146. https://doi.org/10.1111/1468-0106.00122
  • Grifell-Tatjé, E., & Lovell, C. A. K. (1995). A Note on the Malmquist Productivity Index. Economics Letters, 47(2), 169–175. https://doi.org/10.1016/0165-1765(94)00497-P
  • Grifell-Tatjé, E., Lovell, C. A. K., & Pastor, J. T. (1998). A Quasi-Malmquist Productivity Index. Journal of Productivity Analysis, 10(1), 7–20. https://doi.org/10.1023/A:1018329930629
  • Grosskopf, S. (2003). Some Remarks on Productivity and its Decompositions. Journal of Productivity Analysis, 20, 459–474. https://doi.org/10.1023/A:1027364119672
  • Hatami-Marbini, A., & Toloo, M. (2019). Data Envelopment Analysis Models With Ratio Data: A Revisit. Computers & Industrial Engineering, 133, 331–338. https://doi.org/10.1016/j.cie.2019.04.041
  • Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Shahverdi, R., & Rostamy-Malkhalifeh, M. (2007). Cost Efficiency and Cost Malmquist Productivity Index With Interval Data. International Mathematical Forum, 2(9), 441–453
  • Kao, C. (2014). Network Data Envelopment Analysis: A Review. European Journal of Operational Research, 239(1), 1–16. https://doi.org/10.1016/j.ejor.2014.02.039
  • Kao, C., & Hwang, S. -N. (2014). Multi-Period Efficiency and Malmquist Productivity Index in Two-Stage Production Systems. European Journal of Operational Research, 232(3), 512–521. https://doi.org/10.1016/j.ejor.2013.07.030
  • Kao, C. (2017). Measurement and Decomposition of the Malmquist Productivity Index for Parallel Production Systems. Omega, 67, 54–59. https://doi.org/10.1016/j.omega.2016.04.001
  • Khalili-Damghani, K., & Haji-Sami, E. (2018). Productivity of Steam Power-Plants Using Uncertain DEA-Based Malmquist Index in the Presence of undesirable outputs. International Journal of Information and Decision Sciences, 10(2), 162–180. https://dx.doi.org/10.1504/IJIDS.2018.092422
  • Khoshroo, A., Izadikhah, M., & Emrouznejad, A. (2022). Total Factor Energy Productivity Considering Undesirable Pollutant Outputs: A New Double Frontier Based Malmquist Productivity Index. Energy, 258, 124819. https://doi.org/10.1016/j.energy.2022.124819
  • Koronakos, G. (2019). A Taxonomy and Review of the Network Data Envelopment Analysis Literature. In G. Tsihrintzis, M. Virvou, E. Sakkopoulos, & L. Jain (Eds.), Machine Learning Paradigms. Learning and Analytics in Intelligent Systems (pp. 255–311). Cham: Springer. https://doi.org/10.1007/978-3-030-15628-2_9
  • Łącka, I., & Brzezicki, Ł. (2023). The Efficiency of Scientific Activities and Technology Transfer in Higher Education in Poland. Social Inequalities and Economic Growth, (75), 62–89. https://doi.org/10.15584/nsawg.2023.3.4
  • Lovell, C. A. K., Grosskopf, S., Ley, E., Pastor, J. T., Prior, D., & Vanden Eeckaut, P. (1994). Linear Programming Approaches to the Measurement and Analysis of Productive Efficiency. Top, 2(2), 175–248. https://doi.org/10.1007/BF02574810
  • Lovell, C. A. K. (2003). The Decomposition of Malmquist Productivity Indexes. Journal of Productivity Analysis, 20, 437–458. https://doi.org/10.1023/A:1027312102834
  • Lu, W. -M., Kweh, Q. L., & Ting, I. W. K. (2024). Overlooked Effect of Negative Data on Efficiency Analysis. OPSEARCH. https://doi.org/10.1007/s12597-024-00797-7
  • Malmquist, S. (1953). Index Numbers and Indifference Surfaces. Trabajos de Estatistica, 4, 209– 242. https://doi.org/10.1007/BF03006863
  • Maniadakis, N., & Thanassoulis, E. (2004). A Cost Malmquist Productivity Index. European Journal of Operational Research, 154, 396–409. https://doi.org/10.1016/S0377-2217(03)00177-2
  • Mariz, F. B., Almeida, M. R., & Aloise, D. (2018). A Review of Dynamic Data Envelopment Analysis: State of the Art and Applications. International Transactions in Operational Research, 25, 469–505. https://doi.org/10.1111/itor.12468
  • Mergoni, A., Emrouznejad, A., & De Witte, K. (2025). Fifty Years of Data Envelopment Analysis. European Journal of Operational Research, 1–25. https://doi.org/10.1016/j.ejor.2024.12.049
  • Meeusen, W., & van Den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review, 18, 435–444. http://dx.doi.org/10.2307/2525757
  • Mohammadi, N., & Yousefpour, A. (2014). The Biennial Malmquist Index in The Of Negative Data. Journal of Mathematics and Computer Science, 12(1), 1–11. http://dx.doi.org/10.22436/jmcs.012.01.01
  • Nankali, P., Alirezaee, M., & Rakhshan, F. (2022). Malmquist Productivity Index Using the Concept of Loyalty Factor in Bank Branches. Journal of Industrial and Systems Engineering, 14(3), 69–83.
  • Navanbakhsh, M., Jahanshahloo, G. R., Hosseinzadeh Lotfi, F., & Taeb, Z. (2006). Revenue Malmquist Productivity Index and Application in Bank Branch. International Mathematical Forum, 1(25), 1233– 1247. http://dx.doi.org/10.12988/imf.2006.06102
  • O’Donnell, C. J., Rao, D. S. P., & Battese, G. E. (2008). Metafrontier Frameworks for the Study of Firm-Level Efficiencies and Technology Ratios. Empirical Economics, 34(2), 231–255. https://doi.org/10.1007/s00181-007-0119-4
  • Oh, D. -h., & Lee, J. -d. (2010). A Metafrontier Approach for Measuring Malmquist Productivity Index. Empirical Economics, 38(1), 47–64. https://doi.org/10.1007/s00181-009-0255-0
  • Pastor, J. T., & Lovell, C. K. (2005). A Global Malmquist Productivity Index. Economics Letters, 88(2), 266–271. https://doi.org/10.1016/j.econlet.2005.02.013
  • Pastor, J. T., & Lovell, C. A. K. (2007). Circularity of the Malmquist Productivity Index. Economic Theory, 33(3), 591–599. https://doi.org/10.1007/s00199-006-0169-4
  • Pastor, J. T., Asmild, M., & Lovell, C. (2011). The Biennial Malmquist Productivity Change Index. Socio-Economic Planning Sciences, 45(1), 10–15. https://doi.org/10.1016/j.seps.2010.09.001
  • Pastor, J. T., Aparicio, J., & Zofío, J. L. (2022). Benchmarking Economic Efficiency. Technical and Allocative Fundamentals. Cham: Springer.
  • Peykani, P., & Seyed Esmaeili, F. S. (2021). Malmquist Productivity Index under Fuzzy Environment. Fuzzy Optimization and Modelling Journal, 2(4), 10–19. https://doi.org/10.30495/FOMJ.2021.1940660.1038
  • Peykani, P., Farzipoor Saen, R., Seyed Esmaeili, F. S., & Gheidar-Kheljani, J. (2021). Window Data Envelopment Analysis Approach: A Review and Bibliometric Analysis. Expert Systems, 38(7), e12721. https://doi.org/10.1111/exsy.12721
  • Portela, M., Thanassoulis, E., & Simpson, G. (2004). Negative Data in DEA: A Directional Distance Approach Applied to Bank Branches. Journal of the Operational Research Society, 55(10), 1111–1121. https://doi.org/10.1057/palgrave.jors.2601768
  • Portela, M. C. A. S., & Thanassoulis, E. (2010). Malmquist-Type Indices in the Presence of Negative Data: An Application to Bank Branches. Journal of Banking & Finance, 34(7), 1472–1483. https://doi.org/10.1016/j.jbankfin.2010.01.004
  • Ray, S. C., & Desli, E. (1997). Productivity Growth, Technical Progress and Efficiency Change in Industrialized Countries: Comment. The American Economic Review, 87, 1033–1039.
  • Russell, R. R. (2018). Theoretical Productivity Indices. In E. Grifell-Tatjé, C. A. K. Lovell, & R. C. Sickles (Eds.), The Oxford Handbook of Productivity Analysis (pp. 153–182). New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190226718.013.4
  • Shahkooeei, M., Balf, F. R., Rabbani, M., & Jelodar, M. F. (2022). Role of Flexible Data in Evaluation Productivity and Cost Efficiency Using Data Envelopment Analysis. RAIRO-Operations Research, 56(6), 4113–4127. https://doi.org/10.1051/ro/2022181
  • Shephard, R. W. (1953). Cost and Production Functions. Princeton: Princeton University Press.
  • Shestalova, V. (2003). Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities. Journal of Productivity Analysis, 19(2), 211–226. https://doi.org/10.1023/A:1022857501478
  • Sickles, R., & Zelenyuk, V. (2019). Measurement of Productivity and Efficiency: Theory and Practice. Cambridge: Cambridge University Press.
  • Simar, L., & Wilson, P. W. (1998). Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Management Science, 44(1), 49–61. https://doi.org/10.1287/mnsc.44.1.49
  • Simar, L., & Wilson, P. W. (1999). Estimating and Bootstrapping Malmquist Indices. European Journal of Operational Research, 115(3), 459–471. https://doi.org/10.1016/S0377-2217(97)00450-5
  • Simar, L., & Wilson, P. W. (2015). Statistical Approaches for Non-parametric Frontier Models: A Guided Tour. International Statistical Review, 83(1), 77–110. https://doi.org/10.1111/insr.12056
  • Sueyoshi, T., & Aoki, S. (2001). A Use of Nonparametric Statistic for DEA Frontier Shift: The Kruskal and Wallis Rank Test. Omega, 29(1), 1–18. https://doi.org/10.1016/S0305-0483(00)00024-4
  • Tavana, M., Khalili-Damghani, K., Santos Arteaga, F. J., & Hashemi, A. (2020). A Malmquist Productivity Index for Network Production Systems in the Energy Sector. Annals of Operations Research, 284(1), 415–445. https://doi.org/10.1007/s10479-019-03173-7
  • Tohidi, G. H., Razavyan, S. H., & Tohidnia, S. (2010). A Profit Malmquist Productivity Index. Journal of Industrial Engineering International, 6(11), 23–30.
  • Tohidi, G., Razavyan, S., & Tohidnia, S. (2012). A Global Cost Malmquist Productivity Index Using Data Envelopment Analysis. Journal of the Operational Research Society, 63, 72–78. https://doi.org/10.1057/jors.2011.23
  • Tohidi, G., & Razavyan, S. (2013). A Circular Global Profit Malmquist Productivity Index in Data Envelopment Analysis. Applied Mathematical Modelling, 37(1), 216–227. https://doi.org/10.1016/j.apm.2012.02.026
  • Tohidi, G., & Tohidnia, S. (2014). The Biennial Cost Malmquist Productivity Index. Mathematical Research on Industrial Engineering Journal, 1(1), 24–29.
  • Tohidnia, S., & Tohidi, G. (2019). Estimating Multi-Period Global Cost Efficiency and Productivity Change of Systems With Network Structures. Journal of Industrial Engineering International, 15(1), 171–179. https://doi.org/10.1007/s40092-018-0254-x
  • Tone, K. (2001). A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. European Journal of Operational Research, 130(3), 498–509. https://doi.org/10.1016/S0377-2217(99)00407-5
  • Tone, K. (2004). Malmquist Productivity Index: Efficiency Change Over Time. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment Analysis (pp. 203–227). Boston: Springer. https://doi.org/10.1007/1-4020-7798-X_8
  • Tone, K., & Tsutsui, M. (2014). Dynamic DEA With Network Structure: A Slacks-Based Measure Approach. Omega, 42(1), 124–131. https://doi.org/10.1016/j.omega.2013.04.002
  • Tone, K., & Tsutsui, M. (2017a). The Dynamic DEA Model. In K. Tone (Ed.), Advances in DEA Theory and Applications: With Extensions to Forecasting Models (pp. 64–73). Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781118946688.ch8
  • Tone, K., & Tsutsui, M. (2017b). The Dynamic Network DEA Model. In: K. Tone (Ed.), Advances in DEA Theory and Applications: With Extensions to Forecasting Models (pp. 74–84). Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781118946688.ch9
  • Tone, K., & Tsutsui, M. (2017c). Malmquist Productivity Index Models. In: K. Tone (Ed.), Advances in DEA Theory and Applications: With Extensions to Forecasting Models (pp. 40–56). Hoboken: John Wiley & Sons. https://doi.org/10.1002/9781118946688.ch6
  • Walheer, B. (2022). Global Malmquist and Cost Malmquist Indexes for Group Comparison. Journal of Productivity Analysis, 58(1), 75–93. https://doi.org/10.1007/s11123-022-00640-5
  • Wang, Y. -M., & Lan, Y. -X. (2011). Measuring Malmquist Productivity Index: A New Approach Based on Double Frontiers Data Envelopment Analysis. Mathematical and Computer Modelling, 54(11), 2760– 2771. https://doi.org/10.1016/j.mcm.2011.06.064
  • Wang, Z., & Zelenyuk, V. (2024). Data Envelopment Analysis: From Foundations to Modern Advancements. Foundations and Trends in Econometrics, 13(3), 170–282. https://doi.org/10.1561/0800000040
  • Zelenyuk, V. (2006). Aggregation of Malmquist Productivity Indexes. European Journal of Operational Research, 174(2), 1076–1086. https://doi.org/10.1016/j.ejor.2005.02.061
  • Zelenyuk, V. (2023). Productivity Analysis: Roots, Foundations, Trends and Perspectives. Journal of Productivity Analysis, 60(3), 229–247. https://doi.org/10.1007/s11123-023-00692-1
  • Zhu, N., Liu, Y., Emrouznejad, A., & Huang, Q. (2017). An Allocation Malmquist Index With an Application in the China Securities Industry. Operational Research, 17(2), 669–691. https://doi.org/10.1007/s12351-016-0249-6
  • Zofío, J. L., & Lovell, C. A. K. (2001). Graph Efficiency and Productivity Measures: An Application to US Agriculture. Applied Economics, 33(11), 1433– 1442. https://doi.org/10.1080/00036840010009865
  • Zofio, J. L. (2007). Malmquist Productivity Index Decompositions: A Unifying Framework. Applied Economics, 39(18), 2371–2387. https://doi.org/10.1080/00036840600606260

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
59876993

YADDA identifier

bwmeta1.element.ojs-doi-10_2478_ceej-2025-0007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.