Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


System messages
  • Session was invalidated!
2013 | 5 | 11-21

Article title

Analiza efektywności wykorzystania kryteriów informacyjnych w prognozowaniu zapotrzebowania na części zamienne

Content

Title variants

EN
Efficiency analysis of information criteria application in spare parts demand forecasting

Languages of publication

Abstracts

EN
The paper presents a new approach to the spare parts forecasting issue - a method which combines regression modeling, information criteria and artificial neural networks ANN. The research presented in this article compares efficiency of classical methods with the artificial intelligence tool in the scope of spare parts forecasting. Artificial Neural Networks have been advocated as an alternative to traditional statistical forecasting methods. Classical methods, such as exponential smoothing or mean average, have been used for several decades in forecasting demand. However, many of these techniques may perform poorly when demand for an item is lumpy or intermittent. In the paper three concepts of using ANN in spare parts forecasting - micro, macro and hybrid - were described. The article presents also the variable selection issue, which is of a great importance in any model building.
PL
W artykule przedstawiono klasyczne metody prognozowania zapotrzebowania na części zamienne oraz nowy trend w tej dziedzinie - wykorzystanie jednej z metod sztucznej inteligencji - sztucznych sieci neuronowych SSN (Sztuczne Sieci Neuronowe; Artificial Neural Networks, ANN).

Year

Issue

5

Pages

11-21

Physical description

Dates

published
2013

Contributors

References

Document Type

Publication order reference

Identifiers

Biblioteka Nauki
1377738

YADDA identifier

bwmeta1.element.ojs-issn-1231-2037-year-2013-issue-5-article-bwmeta1_element_baztech-article-BPBE-0011-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.