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Abstract
In recent years it tumed out that Markov Switching Models (MSM) are very useful 

in analyses of macroeconomic time series. In most papers continuous State space 
models are considered. However, for the purpose of analyzing time series from 
business surveys discrete State space models are morę suitable. Therefore, we use 
Hidden Markov Models (HMM), which can be treated as kind of MSM. In particular, 
we focus on binary HMM to demonstrate their efficacy in inference based on business 
survey results.
In this analysis data base of industry business surveys, carried out by the Research 
Institute of Economic Development of the Warsaw School of Economics is used.
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1. Introduction
During the last two decades HMM have been widely used in modeling sequence of 

dependent random variables. It is worth emphasizing that the concept of this type of 
process is due to (Bather, 1965), (Baum, 1966), (Petrie, 1969), and that HMM were 
firstly applied in speech recognition problems (Levinson,1983). Now HMM seem to 
be very useful and popular in modeling phenomena in the area of biology (Michałek, 
2001), genetics (Bamdorff, 2001), meteorology (MacDonald, 2000), geophysics 
(MacDonald, 2000), medicine (Leroux, 1992) demography (MacDonald, 2000). They 
are also used in analysis of problems connected with image recognition.

In the area of econometric modeling a brilliant development of HMM-based 
methods is due to J.D. Hamilton. He investigated and successfully applied a particular 
kind of a HMM, a HMM with normal distribution, and introduced the term of Markov

1 A morę detailed version of this paper was published in Roczniki Kolegium Analiz 
Ekonomicznych, zeszyt 13/2004, Szkoła Główna Handlowa, Warszawa 2004



Switching Model (MSM) to econometrics. Nowadays extensions of primary model 
undoubtedly reach beyond the basie idea connected with HMM (Hamilton, 2002).

Binary HMM were applied in many areas (McDonald, 2000), but hardly ever in 
econometrics . In this paper we demonstrate that binary HMM could be successfully 
applied in modeling economic time series, and for this purpose we include an 
example.

2. Definitions
Hidden Markov Models are partially observable stochastic processes with a 

discrete time parameter.
There is a few, in generał equivalent definitions of HMM (Elliot et al.,1995), 

(Bickel et.al., 1996), (McDonald, 2000), (MacKay, 2002). For our purposes we 
introduce the following definition.
Definition 1. A stochastic process {(X n, Yn), n > 0} is called a hidden Markov model if 
it satisfies the following conditions.
1. The process {Xn, n > 0} (unobservable) is a time homogeneous Markov chain with 

a finite State space Sx and transition matrix P = [/?(/, y)]łye5 . The process 

{Xn, n > 0} is called a underlying Markov chain.

2. Given (XQ, X l,...,Xn) , random variables Y0,Yl,...,Yn, are independent with the 

conditional distribution of Yi t i — 0,1,...,w, depending on X t only, and given by

P(Y, 2 Ą X , =x,) = H(y;eXi) ,  where H( .;6X) is a distribution function indexed by 

parameters 0 e 0 .  Set of value of random variables Y, which we denote by SY, is 

called a signal space.
In the case of discrete signal space it is convenient to use emission matrix

n = [ m = ^ = 7) L rJĄ-
One can estimate parameters of the model using maximum likelihood method. For 

large class of HMM, maximum likelihood estimators are known to be consistent and 
asymptotically normal (Bauml966), (Leroux, 1992), (Bickel 1998).

For computing the maximum likelihood estimator the expectation-maximization 
(EM) algorithm can be applied (MacLachlan,1996).

One could think about extending this model to include underlying Markov chain 
with a longer memory. There are some examples of applying models with a hidden 
process being second-order Markov chain (MacDonald, 2000).
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We use the following definition of a second-order Markov model, which is 
consistent with definition 1.
Definition 2. A process {(Xn,Yn),n > 1} is called a basie second-order Markov model 
if it satisfies following conditions.
1. The process {Xn,n> 0} (unobservable) is a second-order time homogeneous 

Markov chain with a finite State space Sx .

2. The same as in the definition 1.
It can be proved that process {(Xn_{, X n)n >1} is a Markov chain. In the seąuel 

this process is called underlying extended Markov chain.
In the above model the conditional distribution of random variable Yn depends 

only on the State o f the hidden Markov chain at time n. It is easy to think o f a little bit 
parsimonious relation between unobservable and observable variable, where the 
conditional distribution o f random variable Yn depends on the State underlying 

process at time n and time n-1 as well.
Definition 3. A process {(Xn,Yn),n > 1} is called a second-order hidden Markov 

model if the process {(X nA,X  n),Yn)\n> 1} isaHMM.

The State space o f process {Yn,n > 1} is called a signal space o f the second-order 

HMM.
For a discrete signal space it is convenient to use the following notation:

w w |  x„ =«•,*„.,= o ■

3. Binary Hidden Markov Models in business survey analysis
In this section we show that binary HMM can be applied to analyze certain time 

series obtained from business surveys.
We deal with the business survey on private industrial enterprises. This survey is 

carried out monthly by the Institute of the Economic Development of the Warsaw 
School of Economics (RIED). We purposely choose the ąuestion on the production 
level as this ąuestion was changed in March 1997. Initially, respondents were asked to 
assess changes in the production level (above normal, normal, below normal) relative 
to a normal level for the given month. Since March 1997 changes in the output have 
been assessed in comparison with a preceding month. As a conseąuence of this change 
two time periods need be compared: January 1993-February 1997 ( in the seąuel this 
time interval is called period 1) and March 1997-May 2001 (we refer to this period as 
to period 2). Although the survey under study has been conducted by the RIED sińce
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1986, we are forced to exclude replies prior to January 1993 as they seem to be 
untypical, owing to the transformation of Polish economy. Furthermore, to preserve 
consistency of our results, we decided to limit the rangę of the research up to May 
2001, which gives two periods of close lengths.

Below we present the transformation rules that, in addition, allow for an easy 
economic interpretation. Moreover, they enable us to determine whether the above- 
mentioned change of ąuestion has been reflected in responses.

Let Bt denotes a percentage balance of answers on the production level. In the 
seąuel we use following notation.

AĄ = Bi+1 “ Bt »
AABt = ABt+X -  AB,.

It seems that simple infonnation about signs of ABt and A AZ?, in certain time 
intervals could be crucial in assessing business activity. Suggested interpretation of 
relevant signs in the two periods under study is given in table 1.

Tablel. Interpretation of the signs Bt, ABt , AABt
Assessment of business activity

Period 1 Period 2
Bt>0 — Growth
Bt<0 — Downtum

ABt>0 Growth Growth at increasing ratę or 
downtum at decreasing ratę

ABt<0 Downtum Growth at decreasing ratę or 
downtum at increasing ratę

AABt>0 Growth at increasing ratę or 
downtum at decreasing ratę

—

AABt<0 Growth at decreasing ratę or 
downtum at increasing ratę

—

Based on the available series of Bt , AB,, AAB, , we constructed three binary series for 
each period under study.

balance t =
for Bt > 0 
for Bt < 0

JO for AB( > 0 
j l  for ABt < 0
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fO for AA5, > 0 
scdelta,=i

[l for AABt < 0

We fitted HMM of second-order (defined in previous section) to thus derived 
binary series. In this paper we deal with underlying second-order Markov chain with 
State space Sx -  {A, B }.

Having in mind possible interpretation o f Markov chain States, we select symbol A 
to denote a State i e S satisfying the following ineąuality:

P(Y, = l\X, = i,X,A = i)>P(Y, = l\X, = j,X ,_t = j ) , where j * i .

We expected that States (A,A) and (B,B) of the extended Markov chain would 
produce probability density significantly different from the discrete uniform density. 
Furthermore, States (A,B) and (B,A) were expected to generate densities „very 
similar” to the uniform one. The underlying reason for the above expectations was as 
follows. The pieces of a sample path of second order Markov chains such as: A,A,A,.. 
or B,B,B,... should correspond with some kind of stabilization in economy, while the 
pieces A,B,A,B,... should be treated as a sign of destabilization.

At the same time we considered possibility of using first order-binary hidden 
Markov models with a two-state State space of the underlying Markov chains. 
Therefore, two models were fitted to each set of data, giving a total of 12 models.

To compare the models we used Bayesian Information Criterion (BIC). As a 
conseąuence, the model that minimizes BIC=-2L+klogn, where L is the value of the 
likelihood function, k is the number of independent parameters, and n is the number of 
observations, has been selected as the best (Schwarz, 1978), (MacDonald, 2000).

In the seąuel we use the following notation. P(X) and II(X) denote estimates of 
transition matrix and emission matrix of second-order hidden Markov model fitted to 
time series X (for example, X=balancel means the binary time series corresponding to 
period 1 and transformation given by the relation balance).

The estimation results show that second-order models are preferred by BIC 
(table 2).

Table 2. BIC values
Balance 1 Balance 2 Deltal Delta2 Scdeltal Scdelta 2

HMM1 78.312 84.114 85.412 79.799 68.442 90.578
HMM2 69.904 69.147 67.442 72.31 68.93 68.23



(A,B) 0 0 0 1
(A,A) 0,2175 0,7825 0 0
(B,B) 0 0 0 1
(B,A) 0,149 0,8709 0 0

n(balancel) =

(A,B) (A, A) (B,B) (B,A)
"0,3212 0,1308 1,0000 1,0000 "
0,6788 0,8692 0,0000 0,0000

Estimates of transition probabilities in matrix P(balancel) suggest that in the 
underlying second-order Markov chain there are no pieces of sample path of type B,B. 
Therefore, it seems that the States have no economic interpretation. Obviously, in the 
case of time series balance 1 this result is not surprising (see table 1). Unfortunately, 
one can draw similar conclusions from estimates conceming time series balance2.

P(balance2) =

0,2539 0,7461 
0 0

0,2583 0,7497 
0 0

(A,B)\  0 0
(A,A) 0,4015 0,5984
(B,B) 0 0
(5 ,4 ) [0,4371 0,5628

A relatively Iow transition probability from State (A,B) to State (B,B) seems to 
exclude economic interpretation as well. Despite of lack of interpretation, some 
interesting conclusions can be drawn. For example, it is worth noticing that the 
underlying extended Markov chain moves from State (A,B) and (B,B) with an almost 
eąual probability. Comparing second row of matrix P(balance 2) with the forth one 
leads to a similar conclusion. Therefore, one can think that model with first-order 
underlying Markov chain is morę suitable. It tums out, however, that a longer memory 
of model is nested in relation between unobservable variable and observable one. This 
is evidenced from the following estimates

(A,B) (A, A) (B,B) (B,A)

Yl(balance2) =
0,4083 0,2718 0,5851 0,7936 
0,5917 0,7282 0,4149 0,2064

It is worth to notę that analysis of other models leads to similar conclusions. For 
example, we have
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O O 0,2425 0,7548 
0,3679 0,6321 0 0

0 0 0,2435 0,7565
0,3599 0,6424 0 0

(A,B) (A, A) (B,B) (B,A)
0,3599 0,3179 0,5191 0,8186"
0,6401 0,6821 0,4809 0,1814

Let us mention that estimates for P(balance2), II(balance2) and P(deltal), 
n(deltal) are very closed, on the contrast with estimates for P(balancel) P(balancel). 
Comparing P(scdeltal), I"I(scdeltal,) and P(delta2), Il( delta2) one can see similar 
relation. It seems to confirm our supposition that binary HMM enabled us to detect 
above-mentioned change of the ąuestion. Unfortunately our statements are far from 
mathematical accuracy. Statistical inference based on the likelihood ratio test in the 
case of such smali sample reąuires farther investigations.

4. Conclusions
General conclusion are as foliows:
1. The long-memory models seem to be useful in business survey analysis.
2. The binary HMMs are sensitive tool for investigation of business survey results. 

They are able to detect change of the ąuestion in survey.
3. The States o f the underlying chain seem not to have economic interpretation.
4. Considered HMM of the second order enabled us to draw essential conclusions 

about the way of the ąuestions interpretation by the respondents.
5. This is worth considering models with much longer memory by replacing ordinary 

underlying chain by MTD.
6. The still opened problem are finite sample properties of the Maximum Likelihood 

Estimator in Hidden Markov Models.
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Appendix

P(balance\) =

Ca ,B) 0 0 0 1
(A, A) 0,2175 0,7825 0 0
(B,B) 0 0 0 1
(B,A) 0,149 0,8709 0 0

(A,B) (A, A) (B,B) (B,A)
x 0|~0,3212 0,1308 1,0000 1,0000 

Tl(balancel) =
1 0,6788 0,8692 0,0000 0,0000
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P{balance 2) =

(A,B) 
(A, A) 
(B,B) 
(B,A)

O O
0,4015 0,5984 

0 0
0,4371 0,5628

0,2539 0,7461 
0 0

0,2583 0,7497 
0 0

{A,B) (A, A) (B,B) (B,A)
0 0,4083 0,2718 0,5851 0,7936'

TL(balance2) =
1 0,5917 0,7282 0,4149 0,2064

(A,B) 0 0 0,2425 0,7548'
, , , (A, A) 0,3679 0,6321 0 0

P(delta\) =
(B,B) 0 0 0,2435 0,7565
(B,A) 0,3599 0,6424 0 0

Tl(delta\) =

P{delta2) =

(A,B) (A, A) (B,B) (B,A) 
OrO,3599 0,3179 0,5191 0,8186 

1 [0,6401 0,6821 0,4809 0,1814

(A,B) [ 0 0 0,2535 0,7465'
(A, A) 0,5839 0,4161 0 0
(B,B) 0 0 0,2686 0,7314
(B,A) 0,5809 0,4191 0 0

Tl(delta2) =

(A,B) (A, A) (B,B) (B,A) 
0,2933 0,5962 0,8093 0,4282' 
0,7067 0,4038 0,1907 0,5718

P{scdelta\) =

(A,B) 
(A, A) 
(B,B) 
(B, A)

0 0 0,2984 0,7016
0,5775 0,4225 0 0

0 0 0,2991 0,7009
0,5743 0,4257 0 0

(A,B) (A, A) (B,B) (B, A) 
'0,6113 0,3835 0,4201 0,8516 
0,3887 0,6165 0,5799 0,1484

Tl(scdelta\) = ^
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(A,B) 
(A, A)

P(scdelta2) =
(B,B) 
(B,A)

O O
0,4682 0,5138 

O O
0,4664 0,5336

0,2923 0,7077 
O O

0,2802 0,7198 
O O

Il(scdelta2) =

(A,B)
0,3295
0,6705

(A, A) (B,B) (B,A) 
0,5022 0,8328 0,6785 
0,4978 0,1672 0,3215


