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Abstract 
 

We propose a framework that extends the one developed by Professor 
Amartya Sen (with Arrowian roots), for the analysis of choice under risk by 
an individual, hereafter referred to as a decision maker. The framework is 
based on the decision maker’s state dependent numerical evaluations − 
referred to as utility, worth, or pay-off − of the alternatives. We provide 
several examples to illustrate meaningful possibilities in the model proposed 
here. The expected utility choice functional assigns to each given state- 
-dependent data profile (i.e., a pair consisting of a profile of state-dependent 
evaluation functions and a probability distribution over states of nature) the 
non-empty set of alternatives obtained by maximizing expected utility.  
A significant result in this paper, which illustrates the workability of our 
frameworks of analysis, is an axiomatic characterization of the expected 
utility choice functional using purely combinatorial techniques. 

Aim/Purpose: To use a minor extension of the Arrow-Sen model of social 

choice theory to study individual decision making/aiding under risk and with 

state dependent evaluation functions. 

Methodology: Combinatorics (theory of finite sets). 

Findings: Plausible decision-aids for decision making under uncertainty with 

state dependent evaluation functions. 

Research Implications: Exactly same model and results apply for the study of 

“weighted” multi-criteria decision making/aiding with state dependent 

evaluation functions. 

Contribution: Apart from useful decision-aids for managerial decision making 

under risk and operations research, we provide an axiomatic characterization 

of the expected utility choice functional. 
 

Keywords: risk, state-dependent evaluation, extended choice functionals. 
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1 Introduction 
 

Here we propose a framework for the analysis of choice under risk by an 

individual, hereafter referred to as a decision maker. The framework is based on 

the decision maker’s state dependent numerical evaluations − referred to as 

utility, worth, or pay-off − of the alternatives. This framework is an extension of 

a model described in Sen (1970). A framework for the analysis of choice under 

risk, when the state-dependent preferences of the decision maker are expressed 

through rankings of alternatives, is motivated in Lahiri (2019b) and the 

framework in its entirety is discussed in Lahiri (2020a). Related axiomatic 

analysis, when the decision maker believes that all states of nature are 

equiprobable, is available (2019c) and a concrete analysis concerning the 

existence of “preferred with probability at least half” winners and when beliefs 

can be represented by any probability distribution is described in Lahiri (2020b). 

The problem of choosing one or more alternatives from a given set of 

alternatives was raised and rigorously formulated for the first time in a seminal 

contribution on majority voting by Pattanaik (1970). For the classical theory of 

decision making under uncertainty in the state dependent case − which is the 

other and major motivation behind this paper − one may refer to Karni (1985). 

Karni (1985) and Sen (1970) comfortably surpass the prerequisites related to 

decision making that is required to understand the frameworks of analyses 

developed here. An informative overall perspective of decision theory can be 

found in Resnik (1987). In the concluding section of this paper, we discuss  

a representation of uncertain prospects as ordered pairs of evaluation functions 

and probability distributions on the set of states of nature, motivated by a similar 

attempt in chapter 2 of Resnik (1987). 

The reasons for our interest in state-dependent preferences are precisely the 

same as the ones discussed in Karni (1985), i.e., it is so obviously true that  

it does not need justification beyond citing trivial day-to-day examples as Karni 

has done in his book. Hence we can comfortably move ahead with our 

understanding of state-dependent preferences as in Karni (1985).  

The major justification for the framework and the investigation presented in 

this paper is that the classical theory of decision making under uncertainty that 

rests on the assumption of maximization of expected utility (state-dependent or 

not) has significant limitations. It has often failed to be consistent with observed 

human behaviour in situations involving risk (i.e., uncertainty with probabilistic 

information about all states of nature available to or plausibly attributable by the 

decision maker) as was shown in the seminal work of Maurice Allais, also 

known as the Allais paradox (see Allais, 1953).  
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After defining the extended choice functional, we provide several examples 

of choice functionals. However, in order to show that our framework of analysis 

is very general and a “workable” model for the purpose of axiomatic 

characterizations, we provide here an axiomatic characterization of the expected 

utility choice functional. Related results are available in Lahiri (2019a). Going 

beyond that is the agenda for future research.   

 

2  The model and some examples of extended choice functionals 

 

The concept of an extended choice functional that is developed here, is a direct 

consequence of the concept of a social welfare functional introduced in Sen (1970) 

or its choice theoretic equivalent − choice functional − discussed in Lahiri (2019c), 

Sen’s framework has been the subject of extensive as well as intensive research, that 

lead to a comprehensive survey by d’Aspremont and Gevers (2002).  

Consider a decision maker (DM) faced with the problem of choosing one  

or more alternatives from a non-empty finite set of alternatives X. Let (X) 

denote the set of all non-empty subsets of X. For a positive integer n ≥ 3, let  

N = {1, 2, …, n} denote the set of states of nature. The satisfaction from the 

chosen alternative is realized only after the state of nature reveals itself. 

We assume the satisfaction derived from the chosen alternative is represented 

by a numerically measurable worth or pay-off referred to as the evaluation of 

the chosen alternative. 

An evaluation function is a function u: X  N  ℝ such that for each 

alternative x  X and state of nature i  N, u(x,i) is the evaluation of x, in state 

of nature i. Let 𝒰 denote the set of all evaluation functions. 

Given u  𝒰 and x  X, we will often use u(x) to denote the point  

(u(x,1), …, u(x,n)) in ℝN (the n-dimensional Euclidean space). 

It is easy to see that {u(x)| u  𝒰 and x  X} = ℝN. 

An admissible set of evaluation functions is any non-empty subset 𝒟 of 𝒰. 

We denote vectors in ℝN by letters a, b, c, d, etc. and when there is need  

for us to be explicit about (for instance) vector a, we write it as (a1, …, an). 

ℝ+
N denotes the set {a  ℝN| ai ≥ 0 for all i  N}. 

The DM’s beliefs about the possibility of the various states of nature being 

realized is summarized by a probability distribution, i.e., pℝ+
N such that ∑ pi

n
i=  = 1. 

Let PN denote the set of all probability distributions on N. Let  denote the equi-

-probability distribution, i.e.   PN such that i = 
1

n
 for all i  N. 
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Given a probability distribution p, the set of most likely states of nature at p is 

denoted by ML(p) = {i N| pi ≥ pj for all jN} = argmax
i∈N

 pi. 

A feasible set of probability distributions (about the future states of nature 

being realized) is a non-empty subset of PN denoted by Q. For whatever reasons, 

the DM’s beliefs are restricted to belong to Q.  

An extended choice functional (ECFL) on 𝒟Q is a function F: 

𝒟Q(X), such that for each (u,p)𝒟Q, the decision maker chooses an 

alternative from F(u,p). 

Before we proceed to examples, let us introduce the concept of regret which 

we shall require subsequently. 

Given u𝒟, xX and iN, the regret from choosing x given u in state of 

nature i, is: regret(x,u,i) = maxyX u(y, i) − u(x,i). 

Note: If 𝒟 = {u𝒰| for all iN, u(.,i): X{1,2, …, #X} is a one-to-one 

function}, where #X denotes the cardinality of X, then each u could be 

considered to be an assignment of  state-dependent rank-score of an alternative, 

with a higher rank-score corresponding to a better ranking.    

Example 1 (Min-max Regret Choice Functional): An ECFL on 𝒟Q is 

said to be the Min-max Regret Choice Functional, denoted FmMR, if for all 

(u,p)𝒟Q: F
mMR

(u,p) = argminxX[maxiML(p) regret(x, u, i)]. 

Research on issues related to Example 1, but in an entirely different 

framework and from an entirely different perspective, is available in Puppe and 

Schlag (2009).   

Example 2 (Max-min or Pessimistic rule): An ECFL on 𝒟Q is said  

to be the Max-min rule, denoted Mm, if for all (u,p) 𝒟Q: Mm(u,p) = 

= argmaxxϵX[miniϵML(p) u(x, i)]. 

Example 3 (Max-max or Optimistic rule): An ECFL on 𝒟Q is said  

to be the Max-max rule, denoted MM, if for all (u,p) 𝒟Q: MM(u,p) = 

= argmaxxϵX[maxiϵML(p) u(x, i)]. 

Example 4 (Hurwicz’s pessimism-optimism criterion): Let [0,1].  

 is called the pessimism index. An ECFL on 𝒟Q is said to be the Hurwicz  

rule, denoted H, if for all (u,p) 𝒟Q: H(u,p) = argmaxxϵX[ min
iϵML(p)

u(x, i) +

+ (1 − ) max
iϵML(p)

u(x, i)].  

Example 5 (Pessimism-optimism regret criterion): Let [0,1].  is  

called the pessimism index. An ECFL on 𝒟Q is said to be the Regret  rule, 

denoted Regret, if for all (u,p) 𝒟Q: Regret(u,p) = argmaxxϵX[(1 −
 ) min

iϵML(p)
regret(x, u, i) +  max

iϵML(p)
regret(x, u, i)]. 
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Example 6 (Expected Utility Choice Functional): An ECFL on 𝒟Q is  

said to be the Expected Utility Choice Functional, denoted Fe, if for all 

(u,p) 𝒟Q: Fe(u,p) = argmaxxϵX ∑ piu(x, i)n
i=1 . 

 

In subsequent sections we are concerned with the expected utility choice 

functional which given state-dependent data chooses alternatives by maximizing 

expected utility. The properties we invoke for our axiomatic characterization are 

not very unusual and seem plausible in the context of our analysis. 

 

3  Some important properties of extended choice functionals 
 

In this section we introduce some important axioms for extended choice 

functionals. 

We shall be assuming in what follows that Q. 

An ECFL F on 𝒟Q is said to satisfy the Weak Domination criterion (WD), 

if for all u𝒟, pQ and x,yX, u(x,i) > u(y,i) for all iN implies yF(u,p). 

An ECFL F on 𝒟Q is said to satisfy Independence of Irrelevant 

Alternatives (IIA), if for all u,v𝒟, pQ and x,yX with x ≠ y, the following 

holds: [u(x,i) = v(x,i), u(y,i) = v(y,i) for all iN, xF(u,p), yF(u,p)] implies 

[yF(v,p)]. 

An ECFL F on 𝒟Q is said to satisfy Equi-Probability Identical 

Evaluation (E-PIE), if for all u𝒟, and x,yX with x ≠ y, the following holds: 

[u(x,i) = u(y,i) for all iN and xF(u,)] implies [yF(u,)]. 

An ECFL F on 𝒟Q is said to satisfy Equi-Probability Anonymity  

(E-PAnon), if for all u,v𝒟, i,jN and xX: [v(x,k) = u(x,k) for all kN\{i,j}, 

v(x,i) = u(x,j), v(x,j) = u(x,i)] implies [F(v,) = F(u,).   

An ECFL F on 𝒟Q is said to satisfy Equi-Probability Additivity  

(E-PAdditivity), if for all u,v𝒟, and aℝN:[v(x) = u(x) + a for all xX] 

implies [F(v,) = F(u,)]. 

An ECFL F on 𝒟Q is said to satisfy Evaluation Probability Conjunction 

(EvPC), if for all u,v𝒟 and pQ satisfying v(x,i) = piu(x,i) for all (x,i)XN, 

it is the case that F(u,p) = F(v,). 

 

4  The significance of Evaluation Probability Conjunction 

 

EvPC is a fairly strong assumption, which is summarized in the following 

proposition whose proof is quite straightforward. 
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Proposition 1: An ECFL F on 𝒰Q is the expected utility choice functional 

on 𝒰Q if and only if the following two properties are satisfied. 

(i) F(u,) = Fe(u,) for all u𝒰; 

(ii) F satisfies EvPC on 𝒰. 
 

Proof: It is easy to see that the expected utility choice functional on 𝒰 

satisfies (i) and (ii). Hence, suppose an ECFL F on 𝒰 satisfies (i) and (ii) and let 

(u,p)𝒰Q. 

By EvPC, F(u,p) = F(v,), where for all (x,i)XN: v(x,i) = piu(x,i). 

By (i) F(v,) = Fe(v,) = argmaxxϵX ∑ vi(x, i)n
i=1  = argmaxxϵX ∑ piu(x, i)n

i=1  = 

= Fe(u,p). 

This proves the proposition. Q.E.D.   

Using Proposition 1 and the main axiomatic characterization in Lahiri (2019a), 

we can easily obtain an axiomatic characterization of the EUCFL on 𝒰Q. 

 

5  An axiomatic characterization of expected utility choice functional 

 

The first lemma of this section leads to the starting point of the discussion of 

subjective expected utility theory due to Leonard Savage in lecture 7 of 

Rubinstein (2019). 

A binary relation R on ℝN whose asymmetric part is denoted P(R) and 

symmetric part is denoted I(R) is said to satisfy: 

(i)  reflexivity (or be reflexive) if for all aℝN it is the case that aRa holds; 

(ii)  completeness (or be complete) if for all a, bℝN it is the case that either 

aRb or bRa holds; 

(iii)  transitivity (or be transitive) if for all a, b, cℝN: [aRb & bRc] implies 

[aRc]; 

(iv)  anonymity (or be anonymous) if for a, bℝN and one-to-one functions 

(permutations) :NN on N: [b(i) = ai for all iN] implies [aI(R)b]; 

(v)  additivity if for a, b, cℝN: [aRb] implies [(a+c)R(b+c)]. 

Give a binary relation R on ℝNand any non-empty finite subset A of ℝN,  

let Best (A,R) = {aA| aRb for all bA}.  

Suppose F is an ECFL on 𝒰Q. Define a binary relation R on ℝN as follows: 

for a, bℝN, aRb if and only if for some u𝒰 there exist x, yX such that u(x,i) = 

= ai, u(y,i) = bi for all iN and xF(u,). 
 

Claim 1: Suppose F is an ECFL on 𝒰Q satisfying WD, IIA and E-PIE.  

Let u𝒰, xF(u,) and yX. Then yF(u,) if and only if u(y)I(R)u(x). 
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Proof: u𝒰, xF(u,) and yX implies u(x)Ru(y). Hence we have to show 

that for u𝒰, xF(u,) and yX, [yF(u,) if and only if u(y)Ru(x)]. 

If yF(u,), then by definition of R, we have u(y)Ru(x). Hence suppose 

u(y)Ru(x) and, towards a contradiction, suppose yF(u,).  

u(y)Ru(x) implies there exist v𝒰 and z, wX with v(z) = u(y), v(w) = u(x) 

and zF(v,). 

Let v*𝒰 with v*(y) = v*(z) = u(y), v*(x) = v*(w) = u(x) and for all 

x'X\{x,y,z,w} and iN, v*(x',i) < min{u(i,x), u(i,y)}.  

By WD, F(v*,)  {x,y,z,w}. 

If z F(v*,), then by E-PIE, y F(v*,). 

Thus, F(v*,)  {x,w} and by E-PIE, F(v*,) = {x,w}. 

Since v*(z) = v(z), v*(w) = v(w), w F(v*,), z F(v*,) and zF(v,) 

contradicts IIA. Thus, zF(v*,) and by E-PIE, yF(v*,). 

Since v*(y) = u(y), v*(x) = u(x), xF(u,), y F(u,) and yF(v*,) 

contradicts IIA. Thus, yF(u,). 

This proves the claim. Q.E.D. 
 

Lemma 1: Suppose F is an ECFL on 𝒰Q satisfying WD and IIA. Then R is 

a weak order on ℝN, i.e., R is reflexive, complete and transitive. If, in addition,  

F satisfies E-PIE, then for all u𝒰: F(u,) = {yX| u(y)Best({u(x)| xX},R)}. 
 

Proof: Given a, bℝN and x, yX, let u𝒰 such that u(x,i) = ai, u(y, i) = bi 

and u(z,i) < min{ai,bi} for all iN and zX\{x,y}. 

Since F satisfies WD, F(u,) is a non-empty subset of {x,y}. Thus either aRb 

or bRa. Hence R is reflexive and complete. 

To show that R is transitive, suppose aRb and bRc for some a, b, cℝN  

with a ≠ b ≠ c ≠ a. Thus, there exist u, v𝒰 and x, y, zX such that u(x,i) = ai, 

u(y,i) = bi = v(y,i),ci = v(z,i) for all iN, xF(u,) and yF(v,).  

Let u* 𝒰 such that for all iN, u*(x,i) = u(x,i) = ai, u
*(y,i) = u(y,i) = v(y,i) = bi, 

u*(z,i) = v(z,i) = ci and u*(w,i) < min{ai, bi, ci} for all wX\{x,y,z}. 

By WD, F(u*,) is a non-empty subset of {x,y,z}. Towards a contradiction 

suppose that xF(u*,). 

Then by WD, F(u*,) is a nonempty subset of {y,z}. 

If yF(u*,), then along with xF(u*,), xF(u,) and [for all iN u*(x,i) = 

= u(x,i) = ai, u
*(y,i) = u(y,i) = bi], we get a violation of IIA. Thus, yF(u*,). 

Thus, F(u*,) = {z} implying zF(u*,) and yF(u*,). 

However, zF(u
*
,) and yF(u

*
,) along with yF(v, ) and [for all iN, 

u*(y,i) = v(y,i) = bi, u
*(z,i) = v(z,i) = ci] leads to a violation of IIA. 

Thus, zF(u*,) and so F(u*,) = , which contradicts the definition of an 

ECFL. 
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Thus xF(u*,) and so xRz. 

Thus, R is transitive.  

That F(u,)  {yX| u(y)Best({u(x)|xX},R)} follows immediately from 

the definition of R. Now suppose that in addition to WD and IIA, F satisfies  

E-PIE. 

Let us show that {yX| u(y)Best({u(x)|xX},R)} F(u,). 

Let yX be such that u(y)Best({u(x)|xX},R) and let zF(u,). Since 

F(u,)  {yX| u(y)Best({u(x)|xX},R)}, u(z)Best({u(x)|xX},R). Thus, 

u(y)I(R)u(z) and since zF(u,) it follows from claim 1 that yF(u,).   

Thus, {yX| u(y)Best({u(x)|xX},R)} F(u,) and hence F(u,) =  

= {yX| u(y)Best({u(x)|xX},R)}. Q.E.D. 

It is possible to follow the discussion in lecture 7 of Rubinstein (2019) with 

the lemma 1 as given and arrive at an axiomatic characterization of EUCFL on 

𝒰Q. However, then we would require using either the separating or the 

supporting hyperplane theorem, which we do not want to do, since we want our 

axiomatic characterization to be based entirely on combinatorial techniques. We 

do not want to use any continuity assumption and/or topological properties of 

finite dimensional Euclidean space to prove our axiomatic characterization. 

Thus, we follow the route provided below. 
 

Lemma 2: Suppose F is an ECFL on 𝒰Q that satisfies E-PAnon. Then R 

satisfies anonymity. 
 

Proof: Since any permutation can be obtained as a succession of pair-wise 

interchanges it is enough to establish the result for the case of a permutation  

such that for some i, jN with i  j, (i) = j, (j) = i and (k) = k for all 

kN\{i,j}. 

Thus, let a, bℝN with ai = bj, aj = bi and ak = bk for all kN\{i,j}.  

Let u𝒰 and x, yX with u(x) = a, u(y) = b and for all zX\{x,y} and kN, 

u(z,k) = , where  min{min{ak,bk}|kN} – 1. 

By WD, F(u,)  {x,y}.  

Without loss of generality suppose xF(u,). By the definition of R, 

u(x)Ru(y), i.e., aRb. 

Now let v𝒰 with v(z,i) = u(z,j), v(z,j) = u(z,i) for all zX and v(z,k) =  

= u(z,k) for all zX and kN\{i,j}. 

By E-PAnon, F(v,) = F(u,) and so xF(v,). 

By definition of R, v(x)Rv(y), i.e., bRa. 

Hence aI(R)b. Q.E.D. 
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Lemma 3: Suppose F is an ECFL on 𝒰Q that satisfies E-PAdditivity. Then 

R satisfies additivity. 
 

Proof: Let a, b, cℝN and suppose aRb. By the definition of R, there exist 

u 𝒰, x, yX with u(x) = a, u(y) = b and xF(u,). Let v𝒰 be such that v(z) = 

= u(z) + c for all zX.   

By E-PAdditivity, F(v,) = F(u,) and so xF(v,).  

By the definition of R, v(x)Rv(y), i.e. (a+c)R(b+c). 

Thus, R is additive. Q.E.D.  
 

Lemma 4: Suppose F is an ECFL on 𝒰Q that satisfies WD, IIA and  

E-PAdditivity. Let <a(0), a(1), …, a(n-1)> be a sequence in ℝN, such that a(k)I(R)a(m) 

for all k, m{0,1, …, n  1}. Then na(0)I(R) ∑ a(k)n−1
k=0 . 

 

Proof: By lemma 1, R is a weak order on ℝN. 

Suppose ma(0)I(R) ∑ a(k)m−1
k=0  for all 1  m  K for some K < n. 

Now Ka(0)I(R) ∑ a(k)K−1
k=0  and additivity of R implies (K+1)a(0)I(R)(a(0) +  

+ ∑ a(k)K−1
k=0 ). 

But a(0)I(R)a(K+1) and additivity of R implies (a(0) + ∑ a(k)K−1
k=0 )I(R) 

(∑ a(k)K−1
k=0 + a(K)). 

By transitivity of R, we get (K+1)a
(0)

I(R) ∑ a(k)K
k=0 . 

By a standard induction argument we now get na(0)I(R) ∑ a(k)n
k=0 .  Q.E.D  

 

Lemma 5: Suppose F is an ECFL on 𝒰Q that satisfies WD, IIA, E-PAnon 

and E-PAdditivity. Let aℝN,  be the permutation on N such that (j) = j+1 for 

all j{1, …, n  1}, (n) = 1, a(0) = a and for k{1, …, n  1}, let aj
(k)

= a
(j)
(k−1)

 for 

all j  1, …, n. Then aI(R)
1

n
∑ a(k)n

k=0 , where every coordinate of ∑ a(k)n
k=0  = 

∑ aj
n
j=1 . 

 

Proof: By lemma 2, aI(R)a(k), for all k = 0,1, …, n-1 and (
1

n
a)I(R)(

1

n
 a(k)), for 

all k = 0,1, …, n  1. 

The lemma now follows from lemma 4. Q.E.D. 

The following proposition is the stepping stone to our main result. 
 

Proposition 2: Suppose F is an ECFL on 𝒰Q that satisfies WD, IIA, E-PIE, 

E-PAnon and E-PAdditivity. Then for all u𝒰, F(u,) = Fe(u,). 
 

Proof: Suppose F is an ECFL on 𝒰Q that satisfies WD, IIA, E-PIE,  

E-PAnon and E-PAdditivity and let u𝒰. Let xF(u,) and towards  

a contradiction suppose there exists yX with ∑ u(y, i)n
i=1  > ∑ u(x, i)n

i=1 . Thus 
1

n
∑ u(y, i)n

i=1 >  
1

n
∑ u(x, i)n

i=1 . 
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By lemma 5, u(x)I(R)a and u(y)I(R)b, where ak = 
1

n
∑ u(x, i)n

i=1  and bk =  

= 
1

n
∑ u(y, i)n

i=1  for all kN. 

By lemma 1, F(u,) = {zX|u(z)Ru(w) for all wX}. 

Thus, u(x)Ru(z) for all zX and by transitivity of R, aRu(z) for all zX. 

Further, by transitivity of R, aRb. 

Let v𝒰 with v(x) = a, v(y) = b, and v(z) = u(z) for all zX\{x,y}. 

Since v(y,k) = bk > ak = v(x,k) for all kN, by WD, xF(v,) =  

= {{zX|u(z)Ru(w) for all wX}. 

Hence it is not the case that aRb and aRv(z) for all zX\{x,y}. 

Since v(z) = u(z) for all zX\{x,y}, it is not the case that aRb and aRu(z) for 

all zX\{x,y}, leading to a contradiction. 

Thus, F(u,)  Fe(u,). Let x F(u,)  Fe(u,) and yFe(u,). 

Since x,y Fe(u,) implies 
1

n
∑ u(y, i)n

i=1  = 
1

n
∑ u(x, i)n

i=1 , by lemma 5, 

u(x)I(R)u(y). 

Since F(u,) = {zX| u(z)Ru(w) for all wX}, xF(u,) and u(x)I(R)u(y), 

by transitivity of R, y{zX| u(z)Ru(w) for all wX}= F(u,). 

Thus, F(u,) = Fe(u,). Q.E.D. 

With propositions 1 and 2 in place, we can prove the main theorem of this 

paper. 
 

Theorem 1: An ECFL F on 𝒰Q is the expected utility choice functional if 

and only if it satisfies WD, IIA, E-PIE, E-PAnon, E-PAdditivity.and EvPC. 
 

Proof: It is easy to verify that the EUCFL on 𝒰Q satisfies the six 

properties. Hence let us suppose that F is an ECFL on 𝒰Q that satisfies the six 

properties and let u𝒰. Let us show that F(u,) = Fe(u,). 

By proposition 3, F(u,) = Fe(u,). 

The theorem now follows from Proposition 1. Q.E.D.     

An examination of the procedure by which we arrived at theorem 1, suggests 

that in order to axiomatically characterize the expected utility choice functional, 

weaker assumptions would suffice. 

An ECFL F on 𝒟Q is said to satisfy the Equi-Probability Weak 

Dominatio criterion (E-PWD), if for all u𝒟 and x,yX, u(x,i) > u(y,i) for all 

iN implies yF(u,). 

An ECFL F on 𝒟Q is said to satisfy Equi-Probability Independence of 

Irrelevant Alternatives (E-PIIA), if for all u,v𝒟 and x,yX with x ≠ y, the 

following holds: [u(x,i) = v(x,i), u(y,i) = v(y,i) for all iN, xF(u,), yF(u,)] 

implies [yF(v,)]. 



         S. Lahiri 

 

76 

The alternative axiomatic characterization of EUCFL on 𝒰 based on the 

using the above four properties instead of their analogues used in theorem 2 is 

the following. 
 

Theorem 2: An ECFL F on 𝒰Q is the expected utility choice functional if and 

only if it satisfies E-PWD, E-PIIA, E-PIE, E-PAnon, E-PAdditivity and EvPC. 
 

 

 

6  Representation of uncertain prospects as an element  

in the domain of a choice functional 
 

The following is based on Chapter 2 of Resnik (1987), where “states of nature” 

are related to “consequences”.  

Given a non-empty set 𝒳, an uncertain prospect on 𝒳 is a probability 

distribution p on 𝒳 with finite support, i.e., support (p) = {x  𝒳 |p(x) > 0} is  

a non-empty finite set. The elements of 𝒳 are called prizes or consequences.  

If 𝒳 = ℝ, then the prizes are interpreted as monetary gains and losses, depending 

on whether the real number is positive or negative. 

Let {p(1), …, p(K)} for some positive integer K be a non-empty finite set of 

uncertain prospects. 

Let X = {p(1), …, p(K)} denote the set of alternatives from which the decision 

maker is required to choose. Note that ⋃ support(p(j))K
j=1  is a non-empty finite 

subset of 𝒳.  

Let N = {1,2, …, K}⋃ support(p(j))K
j=1  denote the set of states of nature. 

Clearly N is non-empty and finite. 

Let v:{0}𝒳ℝ satisfying v(0) = 0 denote the utility function of the 

decision maker. The utility function is defined on a set consisting of 

consequences and the real number 0, which could belong to 𝒳. Intuitively,  

v(x) > v(0) means that x is a gain and v(x) < v(0) means that x is a loss. 

The corresponding evaluation function u:XNℝ of the decision maker is 

defined as follows: for all p(k)X and (j,x)N, u(p(k), (j,x)) = v(x) if k = j and 

u(p(k), (j,x)) = v(0) if k  j. 

The decision maker’s beliefs about the occurrence of the states of nature in N 

is given by a probability distribution q on N such that for all (j,x)N, q(j,x) =  

= 
1

∑ #(support(p(k)))K
k=1

, where for each k{1, …, K}, #(support(p(k)) is the 

cardinality of support (p(k)). 
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