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Abstract 
 

Aim/purpose – In this paper, a market volatility-robust portfolio composition frame-
work under the modified Markowitz’s approach with the use of sampling methods is 

developed in order to improve the allocation efficiency for a portfolio of financial in-

struments formulation procedure at an increased market volatility. 

Design/methodology/approach – In order to overcome the risk of not receiving an 

optimal solution to the portfolio optimization (suboptimal outcomes of attribution of 

weights in allocation procedures) the developed model, first, implements the rationale 

that financial markets largely feature two states, i.e., quiescent (non-crisis; low market 

volatility) periods that are occasionally interspersed with stress (crisis; high market  

volatility) periods and, second, relies on many input samples of rates of return, either 

from an empirical distribution or a theoretical distribution (mitigating estimation risk). 

All computational results are reported for publicly available historical daily data sets on 
selected Polish blue-chip securities.  

Findings – Not only did the presented method produce more diversified allocation, but 

also successfully minimized the unfavorable effects of increased market volatility by 

providing less risky portfolios in comparison to Newton’s method, typically used for 

optimization under portfolio theory. 

Research implications/limitations – The research emphasized that in order to get  

a more diversified investment portfolio it is crucial to outdo the limitations of a single 

sample approach (utilized in Markowitz’s model) which may on some occasions be 

statistically biased. Thus it was proved that sampling methods allow to obtain a less 

concentrated and volatile allocation which contributes the investment decision-making. 
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However, the current research focused solely on publicly available input data of particular 

securities. In this manner, an additional analysis can be prepared for other jurisdictions and 

asset classes. There can also be considered a use of other than variance risk measures. 

Originality/value/contribution – The suggested framework contributes to existing 

methods a wide array of quantitative data analysis and simulation tools for composing an 

unique approach that directly addresses the task of minimizing the adverse implications 
of increased market volatility that, in consequence, pertains to knowledgeable attributing 

of investment portfolio proportions of either individual or institutional investors. The 

prepared method is also proved to hold demanded computational quality and, important-

ly, the capacity for further development. 

 

Keywords: investment decisions, optimization techniques, portfolio selection, statistical 

simulation methods.  

JEL Classification: C150, C610, G110. 

 

 

1. Introduction 
 

Markowitz (1952) introduced a quantitative framework that intends to de-

fine a portfolio formulation process, widely known as the foundation of the port-

folio theory. As part of the concept, the financial market investors commit their 

capital resources to selected investment opportunities and anticipate a satisfacto-

ry benefit in reward which is, typically, an adequate rate of return from their 

individual asset allocation. In that manner, in relation to portfolio characteristics, 

investment participants are assumed to favor higher rates of return whilst ex-

posed to a certain risk level on all occasions, or conversely for a particular ex-

pected rate of return, they always prefer lower extent of the volatility. Therefore, 

the optimal portfolio is assumed to hold a combination of assets characterized 

with a possibly best risk-return trade-off. Importantly, it was distinctly confirmed 

that a statistically significant positive trade-off between expected rates of return 

on financial instruments and associated risk exists (Lundblad, 2007). Conse-

quently, the more volatile a financial instrument is, or otherwise the higher its 

potential loss, the higher its expected rate of return is. Thus, a reduction of the 

investment volatility should be of vital concern. The cited rationale will be con-

sidered as the fundamental notion of the portfolio theory (e.g., Elton, Gruber, 

Brown, & Goetzmann, 2014). 

Essentially, in periods of market turbulence, as a result of either systemic or 

idiosyncratic events, an increase in the volatility of market parameters and ac-

cordingly in the prices of investment assets are observed (Aliber, 2011). For 

instance, the sudden wave of economic losses resulted from global failures of 

credit institutions that began in 2007 and 2008 or, currently experienced, after-
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math of a lockdown related to SARS-CoV-2 pandemic remind the raison d’être 

of the portfolio risk management. In specific, during a financial crisis, correla-

tions among the rates of return on securities use to appreciate in excess of that 

implied by the economic fundamentals, what may, e.g., influence the efficiency 

of the idiosyncratic risk diversification effect, emphasized by Goetzmann  

& Kumar (2001). Loretan & English (2000), Hartmann, Straetmans, & de Vries 

(2004) and Bekaert, Campbell, & Ng (2005) have highlighted this issue for fi-

nancial market collapses since 1980s and identified it as the contagion phenom-

ena. Accordingly, more robust security selection strategies are sought at present. 

Therefore, in order to formulate an investment portfolio, it is essential to apply  

a competent optimization technique for rational investment decision-making and 

proper selection of financial instruments, especially in times of increased volatil-

ity. This should be understood that a rational asset allocation assures a desirable 

trade-off between an expected rate of return on a portfolio and its volatility. 

In this paper, a market volatility-robust portfolio composition framework is 

elaborated to enhance the efficiency of attributing investment proportions to 

selected securities in a composition problem of a portfolio of financial instru-

ments under the modified Markowitz’s approach with the use of sampling meth-

ods at an increased market volatility. The presented model implements the idea, 

described by Litzenberger & Modest (2008), that financial markets do feature 

quiescent (non-crisis; low market volatility) periods that are occasionally inter-

spersed with stress (crisis; high market volatility) periods. Accordingly, the sug-

gested framework aims at minimizing the adverse effects of an identified market 

volatility relation between both instances which remains not extensively ex-

plored in the literature. Thus, alike constructed investment portfolios may be 

considered an addition to commonly utilized alternatives to mean-variance opti-

mization techniques, e.g., a regime-switching asset allocation (or Markov- 

-switching asset allocation), discussed, e.g., by Ang & Bekaert (2002; 2004), 

which requires early recognition and pre-stress period strategy adjustments. Im-

portantly, by and large, volatility-robust portfolios reduce the necessity of in-

vestment position rebalancing, which, ceteris paribus, diminishes the related 

transaction costs. Additionally, if this technique is employed to markets that 

exhibit, an opposite to a contagion phenomenon, a flight-to-quality effect, i.e., 

volatility increases while correlation between selected assets decreases (Baur  

& Lucey, 2006; Beber, Brandt, & Kavajecz, 2006; Berben & Jansen, 2005), it 

might provide an opportunity to compose as stress-insensitive portfolios as pos-

sible. Finally, the suggested methodology also addresses the estimation risk is-
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sue, related to potentially biased historical input data, described by Orwat- 

-Acedańska & Acedański (2013). 

In view of the above, this paper aims at answering the research question if by 

use of the developed framework and based on the rationale that financial markets 

are characterized by quiescent and stress states, an individual or institutional inves-

tor can improve the allocation efficiency of a portfolio of securities in presence of 

an elevated market volatility, e.g., resulting from an exogenous shock. 

The remainder of this paper was organized as follows. Chapter 2 presents  

a formulation of the market volatility-robust portfolio optimization model, derived 

from the Markowitz’s portfolio theory and with the use of sampling methods (to 

overcome the limitations of, e.g., Newton’s method), was defined. Chapter 3 ad-

dressed a specified portfolio optimization problem using the developed framework 

and the obtained computational results were presented for the selected input data 

sets. Next, Chapter 4 presented a dedicated discussion and optimized backtesting 

of portfolios was included. Finally, conclusions were formulated. 
 

 

2.  Theoretical background in the modified Markowitz’s approach 

with the use of sampling methods 

 

2.1. Portfolio composition background 

 

Markowitz assumed that rates of return on assets follow the multivariate 

normal distribution. This entails that an investment portfolio is comprehensively 

characterized by its expected rate of return, E(rp), given as: 
 

                                    𝐸(𝑟𝑝) = ∑ (𝑤𝑖𝐸(𝑟𝑖))𝑛
𝑖=1 = 𝑊𝑇𝑅  (1) 

 

and its variance (volatility, or risk), σp
2, such as: 

 

               𝜎𝑝
2  = ∑ (wi

2σi
2) + n

i=1 ∑ ∑ (𝑤𝑖𝑤𝑗𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑗))  =  𝑊𝑇𝐶𝑊𝑛
𝑗=1
𝑗≠𝑖

𝑛
𝑖=1   (2) 

 

where W is a matrix of proportions, wi, invested in i-th security, R is a matrix of 

expected rates of return of selected financial instruments, and C is a symmetric 

variance-covariance matrix (Markowitz, 1959). Based on the above, the rate of 

return of a constructed portfolio is defined as a weighted average of rates of re-

turn of its comprising securities and is the basic measure of the average receipts 

of the investment opportunities. The mentioned weight is regarded simply as  

a proportion of resources allocated in particular assets. In this place, it is im-
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portant to notice that the variance of an investment portfolio is not the weighted 

average of the separate asset variances, e.g., the portfolio built upon two securi-

ties bears the variance: 
 

                                  σp
2 = E(wi(ri  - E(r

i
)) + wj(rj - E(r

j
)))

2
  (3) 

 

where σp
2 is the two asset portfolio variance, wi and wj are the weights attributed 

to securities i and j, ri and rj are the rates of return of the securities i and j, 

whereas E(ri) and E(rj) are their expected values. Further reduction and applica-

tion of the binomial theorem, i.e., (x + y)
2
 = x2 + 2xy + y2, leads the variance of 

the two securities portfolio to the form of: 
 

   σp
2 = E [wi

2 (ri - E(ri))
2

 + 2wiwj (ri - E(ri)) (rj - E(rj))  + wj
2 (rj - E(rj))

2

]  (4) 
 

from where it is useful to recall the properties of expected value statistic. One 

should apply that the mean of a sum of two rates of return is equivalent to the 

sum of mean of each rates of return (i.e., E(ri + rj) = E(ri) + E(rj)) and that  

a mean of constant multiplied by the rate of return is equivalent to the product of 

the constant and the mean of the rate of return (i.e., E(c(ri)) = cE(ri)) to obtain: 
 

σp
2 = wi

2E [(ri - E(ri))
2
]  + 2wiwjE [(ri - E(ri)) (rj - E(rj))] 

                                                 + wj
2E [(rj - E(rj))

2

]  (5) 
 

where the expression 𝐸 [(ri - E(ri)) (rj - E(rj))] is the covariance, Cov(ri, rj), of 

assets i and j. Therefore, it is true that formula (2) stands for the variance of an 

investment portfolio, which is summarized, e.g., by Alexander (2008). 

In this manner, an investor with a single period portfolio construction prob-

lem considers two feasible approaches. First, (a) to minimize the volatility of an 

investment portfolio for a given expected rate of return. Second, (b) to maximize 

the expected rate of return of an investment portfolio for a particular volatility 

level. Approach (a) involves finding the solution to an optimization issue with 

continuous random variables, quadratic objective and linear constraints, whereas 

approach (b) implies solving an optimization issue with continuous random vari-

ables, however, with linear objective and all linear constraints but one quadratic 

limitation. Bodie, Kane, & Marcus (2010) noticed that despite the fact that the 

methods proposed logically resemble each other, approach (a) is computationally 

more efficient. For that reason, formally, the portfolio optimization problem is 

widely defined as: 
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                                               𝑚𝑖𝑛 𝜎𝑝
2  = 𝑊𝑇𝐶𝑊  (6) 

 

subjected to: ∑ 𝑤𝑖  =  1𝑛
𝑖=1  and 0 ≤ 𝑤𝑖 ≤ 1 for 𝑖 =  1, 2, … , 𝑛 where propor-

tions, wi,
 
always sum up to one (i.e., short selling is not allowed) and for a de-

sired minimal benchmark rate of return, E(rb). 
 

In addition, the suggested in this paper market volatility-robust investment 

portfolio composition procedure incorporates the principle that financial markets 

are characterized, in most of the times, by quiescent periods that are infrequently 

interspersed with exogenous stress periods. Therefore, investment participants 

take into account the market turbulence possibility, as stated in Kole, Koedijk,  

& Verbeek (2006). Typically, the crisis intervals are specified by acute decline in 

the rates of return on financial instruments and increased volatility. Thus, in con-

sequence, the asset allocation is done in the process of minimizing the ratio of 

variances in both non-crisis (quiescent) period, 𝜎𝑞
2, written as: 

 

                                                   𝜎𝑞
2 = 𝑊𝑇𝐶𝑞𝑊  (7) 

 

and in crisis (stress) period, 𝜎𝑐
2, formulated as: 

 

                                                  𝜎𝑐
2 = 𝑊𝑇𝐶𝑐𝑊  (8) 

 

where Cq and Cc are symmetric variance-covariance matrices for quiescent and 

stress intervals respectively. Thus, if wi (i = 1, 2, … , n) are the proportions of 

resources invested in i-th asset under either non-crisis or crisis regime and 

∑ 𝑤𝑖 = 1𝑛
𝑖=1 , then the optimization issue is defined, in general, as follows: 

 

                        ŵ = argmin
σc

2

σq
2       {

0 ≤ wi ≤ 1 where i = 1, 2, …, n

∑ wi = 1n
i=1

  (9) 

 

The market volatility-robust portfolios reduce the necessity of investment 

position rebalancing, which, ceteris paribus, curbs the associated transaction 

costs (e.g., fees but also operational costs). Passive investment strategies enthu-

siasts, who wish to limit detrimental effects of heightened volatility, may consid-

er it especially useful to adapt the model in their asset allocation. The proposed 

framework seems suitable for all asset classes, provided that the non-crisis/crisis 

regime is implemented and data are segregated accordingly. 
 

 

2.2. Market volatility-robust portfolio composed of two assets 
 

In order to determine the market volatility-robust portfolio analytically, let 

us consider a two asset market spectrum (i = 1, 2). Volatility is measured by 

variance in both quiescent period, 𝜎𝑞
2, and in time of market turmoil, 𝜎𝑐

2. Fur-
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thermore, the correlation coefficient of securities between rates of return is ρq, 

during non-crisis interval and ρc, while crisis. If short selling is not allowed, or wi 

∈ <0, 1> and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , then the portfolio composed of two assets consists of 

weights wA for asset A and (1 – wA) for asset B. As a result, it is true that: 
 

                   𝜎𝑞
2 = 𝑤𝐴

2𝜎𝐴𝑞
2 + (1 − 𝑤𝐴)2𝜎𝐵𝑞

2 + 2𝑤𝐴(1 − 𝑤𝐴)𝜎𝐴𝑞𝜎𝐵𝑞𝜌𝑞 (10) 
 

                    𝜎𝑐
2 = 𝑤𝐴

2𝜎𝐴𝑐
2 + (1 − 𝑤𝐴)2𝜎𝐵𝑐

2 + 2𝑤𝐴(1 − 𝑤𝐴)𝜎𝐴𝑐𝜎𝐵𝑐𝜌𝑐 (11) 
 

With the purpose of finding the value of the proportion wA that minimizes 

the relation 
σc

2

σq
2 , it is necessary to differentiate with respect to wA, which leads to: 

 

(
𝜌𝑐

𝜌𝑞
− 1) [4𝑤𝐴(1 − 𝑤𝐴)(𝑤𝐴𝜎𝐴𝑞

2 − (1 − 𝑤𝐴)𝜎𝐵𝑞
2 )

− 2(1 − 2𝑤𝐴)(𝑤𝐴
2𝜎𝐴𝑞

2 + (1 − 𝑤𝐴)2𝜎𝐵𝑞
2 )] = 0 

 

(12) 

 

If the correlation coefficient of rates of return on financial instruments in 

quiescent interval is a lower value then its equivalent in stress period, or ρc > ρq, 

then it reveals the contagion phenomena. In the opposite scenario, or ρc < ρq, 

flight-to-quality effect is observed. Thus, in case when the flight-to-quality effect 

is present the correlation spread between crisis and non-crisis periods is always 

negative (ρc – ρq < 0), which creates the anticipated volatility and correlation 

trade-off. In essence, if the relation 
𝜌𝑐

𝜌𝑞
 varies from one (≠ 1), which is analogous 

to the statement that correlations of investment assets’ rates of return differ in 

crisis periods, the condition may be simplified and be given by: 
 

                                       𝑤𝐴
2𝜎𝐴𝑞

2 − (1 − 𝑤𝐴)2𝜎𝐵𝑞
2 = 0 (13) 

 

Therefore, the distinctive asset allocation determined by proportions: 
 

                                         {
𝑤𝐴 =

𝜎𝐵𝑞

𝜎𝐴𝑞+𝜎𝐵𝑞

𝑤𝐵 = 1 − 𝑤𝐴 =
𝜎𝐴𝑞

𝜎𝐴𝑞+𝜎𝐵𝑞

  (14) 

 

for the market volatility-robust portfolio is being completed. 
 

 

2.3. Sampling methods in portfolio formulation 
 

In the Markowitz’s approach, the proportions wi are found based on obser-

vations of rates of return on particular securities obtained from a single sample. 

In consequence, the estimates may be biased, especially, if outliers are observed 

or rates of return are asymmetrically distributed which results in suboptimal 
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allocation due to estimation errors, i.e., materialization of estimation risk. The 

mentioned issue became a catalyst for the development of a variety of statistical 

methods, which are utilized to reduce the unfavorable outcomes of estimation 

risk in investment portfolio selection process. Such methods are notably: robust 

estimation methods, Bayesian estimation methods, robust optimization methods 

and, analyzed in this paper, sampling methods.  

The sampling methods allow to formulate an optimal portfolio built on 

many samples either from an empirical distribution or a theoretical distribution. 

In order to overcome the risk of not receiving an optimal solution to the portfolio 

optimization (via, e.g., Newton’s method), the results are an average of weights,  

wi, attained from multiple scenarios. Michaud (1998) was first to introduce the 

technique to the field of asset allocation. Orwat-Acedańska & Acedański (2013) 

noted that, typically, the phases of portfolio construction procedure in accord-

ance with the Michaud’s sampling methods approach are as follows: 

Phase 1. Based on an initial sample – (K x n) matrix of rates of return observa-

tions – a k-amount of subsamples of the same size as the initial sample is 

formed. Subsamples may be derived from an empirical distribution (bootstrap-

ping methods) or from a theoretical distribution (Monte Carlo simulations). 

Phase 2. For each subsample j(j = 1, 2, … , n) an estimation of [optionally – 

E(rj) vector and] Cj matrix is done. 

Phase 3. [Optionally – for an desired level of minimal benchmark rate of return, 

E(rb)] Proportions, wj, are obtained. 

Phase 4. Subsample j portfolio proportions are averaged: 
 

                                                     wp_n=
1

n
∑ wj

n
j=1  (15) 

 

so that an optimal solution, or weights, wp_0, are calculated. Scherer (2002) no-

ticed that investment portfolios derived in the above manner hold a higher level 

of diversity than those achieved by means of a classic, i.e., Markowitz’s mean-

variance optimization. The received proportions are also less sensitive to signifi-

cant changes due to accepted risk alterations. Moreover, sampling methods may 

be used for a wide variety of rates of return distribution classes and for risk 

measures other than variance, i.e., Conditional Value-at-Risk (i.e., CVaR). 
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3.  Research findings on the market volatility-robust portfolio  

optimization with the use of sampling methods 
 

3.1. Input data 
 

In this section the computational results for allocation of the investment 

portfolio proportions, wp_n, with the use of sampling methods (for subsamples 

derived from both an empirical distribution and a theoretical distribution, i.e., 

normal distribution) are presented in comparison to Markowitz’s approach. For 

the purpose of a portfolio formulation process and said comparison, the model 

stated and described in Chapter 2 was implemented. 

Therefore, in order to validate the usefulness of the suggested framework, 

an investments in 10, diversified-by-sectors WIG20 traded blue-chip securities, 

i.e., CCC (clothing), CDR (gaming), CPS (telecommunication), JSW (coal min-

ing and production), KGH (metal extracting and production), MBK, PEO (both 

banking), PGN (gas extraction and energy), PKN (crude oil extraction and pro-

duction) and PZU (insurance) was considered. Table 1 presents a summary of 

information on the percentage share of securities in WIG20. 
 

Table 1. Share of selected blue-chips securities in WIG20 at June 1, 2020 
 

% CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

%WIG20 1.4% 7.9% 4% 0.8% 12.6% 1.4% 5.5% 4.5% 8.3% 8.3% 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

Based on historical daily prices (where all used prices were publicly avail-

able), logarithmic rates of return of selected financial instruments were calculated 

for the period from July 1, 2014 until June 20, 2020 (input data; i.e., 1,477 trad-

ing day observations). Next, importantly, for the purpose of the allocation, the 

reference, or risk benchmark was determined (i.e., WIG20 index volatility)  

and afterwards the input data were segregated and assigned to period subsamples 

q – quiescent and c – crisis. As a rule, it was presumed that the volatility (i.e., 

standard deviation) of the risk benchmark, σWIG20 , should be calculated for at 

least three, moving time intervals (e.g., 1M, 3M, and 6M). Thus, it was assumed 

that if the reference index volatility for the shortest-term interval was a higher 

value than for the medium-term interval and longer-term interval, and if volatil-

ity for the medium-term interval was a higher value than longer-term interval 

(i.e., σWIG20_1M > σWIG20_3M > σWIG20_6M) then a stress period, or simply a crisis 

was observed. Figure 1 is a graphical illustration of the above assumption for the 

risk benchmark volatility (i.e., 1M, 3M, and 6M) in the considered time period. 
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Figure 1.  Risk benchmark volatility for 1M, 3M and 6M intervals  

from July 1, 2014 until June 1, 2020 
 

 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020).  

 

The allocation per se was performed at four moments, i.e., at the end of 

2018 and 2019 (December 28, 2018 and December 30, 2019, respectively), 

March 31, 2020 and June 1, 2020, where the last two dates specifically included 

conditions related directly to SARS-CoV-2 pandemic influence on financial 

markets (i.e., a significant increase in volatility was observed; Figure 1 and  

Table 2). 

 
Table 2.  Risk benchmark volatility at December 28, 2018, December 30, 2019,  

March 4, 2020, March 31, 2020 and June 1, 2020 
 

σWIG20_t 1.06.2020 31.03.2020 4.03.2020* 30.12.2019 28.12.2018 

σWIG20_1M 0.0268 0.0492 0.0212 0.009 0.0144 

σWIG20_3M 0.0321 0.0308 0.0152 0.0095 0.0135 

σWIG20_6M 0.0238 0.0229 0.013 0.01 0.0126 
 

* Date of first official SARS-CoV-2 infection in Poland. 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 

 

After the input data were declared for both period subsamples q and c, new 

data subsamples were derived by means of sampling methods either from an 

empirical distribution (bootstrapping methods) or a theoretical distribution 

(Monte Carlo simulations). Next, the symmetric variance-covariance matrices, 

Cq and Cc, were constructed. Ultimately, the asset allocation was done via mini-

mization of the relation of the specific time interval data subsamples c and q 

volatilities. The final results, i.e., portfolios, were an average of proportions and 

statistics obtained from 1,000, drawn with replacement, iterations, as stated in 

Subchapter 2.3. In the end, the received allocations were compared to propor-

tions and portfolio statistics received with the use of Markowitz’s approach. 

 

0%

2%

4%

6%

σ(1M)_lnr_WIG20 σ(3M)_lnr_WIG20 σ(6M)_lnr_WIG20 
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3.2. Empirical results and analysis 
 

First set of portfolios was formulated for the end of 2018 (i.e., December 

28, 2018), when the input data consisted of logarithmic rates of return of 1,125 

trading day observations (starting from July 1, 2014). In accordance with the risk 

benchmark volatility criterion, σWIG20_1M > σWIG20_3M > σWIG20_6M, the initial 

input data were segregated into two subsamples q and c. As such, data set q in-

cluded 801 trading days, whereas data set c regarded 324 trading days. These 

data sets were described by volatilities presented in Table 3. 
 

Table 3. Segregated data volatilities at December 28, 2018 
 

σj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

σ1 0.0216 0.024 0.0176 0.0337 0.0229  0.02 0.0156 0.0192 0.0195 0.0154 

σc_1 0.0236 0.0238 0.0174 0.0361 0.0247 0.0216 0.0163 0.0194 0.0218 0.0173 

σq_1 0.0209 0.0241 0.0178 0.0325 0.0212 0.0195 0.0153 0.0186 0.0187 0.0148 

σc_1 σq_1⁄  1.1286 0.9872 0.9743 1.1096 1.1637 1.1073 1.0682 1.0407 1.1627 1.1666 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

It was anticipated that volatilities within the q data set would be lower than 

their counterparts in c. However, such relationship was not observed for CDR and 

CPS, which, in otherwise relatively stable market conditions, remained more un-

expected, with increased rates of return and trading volume. Nonetheless, out of 

initially segregated input data, subsamples q and c were further generated with 

both bootstrapping and Monte Carlo methods. For newly obtained data sets corre-

sponding Cq and Cc matrices were calculated. Next, 1000 above-defined optimiza-

tions were performed and afterwards results were averaged to finally obtain the 

minimal value of the relation of data subsamples c and q volatilities. Before not 

mentioned, assumed constraints included: no short selling allowed, maximal 20% 

commitment to one instrument and non-negative portfolio expected rate of return. 

Complementary, Markowitz allocation was done. A summary of the optimized 

portfolio proportions and volatility statistics are presented in Table 4. 
 

Table 4. Optimized portfolio proportions and volatility statistics at December 28, 2018 
 

wj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

wBoot_1 0.1043 0.0452 0.0791 0.0782  0.137 0.1069 0.1269 0.0794 0.1088 0.1343 

wMC_1 0.1132 0.0382 0.0796 0.0609 0.1179 0.1101 0.1059 0.0774 0.1295 0.1673 

wM_1 0.1023 0.0559 0.1761  0.01  0.01 0.0275 0.192 0.1131 0.124 0.1891 

Bootstrapping volatility σq_Boot_1 = 0.0076 σc_Boot_1 = 0.0095 σc_Boot_1 σq_Boot_1⁄  = 1.2455 

Monte Carlo volatility σq_MC_1 = 0.0075 σc_MC_1 = 0.0092 σc_MC_1 σq_MC_1⁄  = 1.2272 

Markowitz volatility σq_M_1 = 0.0093 σc_M_1 = 0.0117 σc_M_1 σq_M_1⁄  = 1.261 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
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Therefore, the presented results put emphasis on a few important issues. 

First, sampling methods in comparison to Markowitz’s approach provide a more 

diversified allocation, i.e., lower concentration in particular instruments. Second, 

the averaged volatilities for both subsamples q and c are lower, which also re-

sults, as desired, in their lower quotient. Additionally, with the averaged correla-

tion spreads between subsamples q and c considered, mostly a flight-to-quality 

effect was observed. A corresponding summary is included in Table 5. 

 
Table 5. Correlation spreads for subsamples q and c at 28/12/2018 
 

 CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

CCC –          

CDR 0.0603 –         

CPS −0.0263 0.0717 –        

JSW −0.0785 −0.1621 0.0188 –       

KGH −0.0155 −0.0009 0.0032 −0.0124 –      

MBK 0.0202 0.0913 −0.123 −0.0278 −0.0631 –     

PEO 0.0535 0.0087 0.0804 −0.0156 −0.044 −0.0325 –    

PGN −0.0249 −0.0541 −0.1359 0.0533 −0.041 0.0257 −0.0666 –   

PKN −0.0801 0.1106 0.0018 0.1091 0.1328 0.0165 −0.1036 −0.0256 –  

PZU 0.0887 0.012 −0.0002 0.0674 0.0512 0.0073 0.113 −0.0476 −0.0912 – 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

Next, second set of portfolios was prepared for the end of 2019 (i.e., De-

cember 30, 2019), where the input data consisted of logarithmic rates of return 

of 1,370 trading day observations (period extended by 245 trading days since the 

end of 2018). The input data were further segregated in line with the risk 

benchmark volatility criterion so that data set q included 1001 trading days, 

whereas data set c included 369 trading days. These data sets were described by 

volatilities presented in Table 6. 
 
Table 6. Segregated data volatilities at December 30, 2019 
 

σj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

σ2 0.0223 0.0235 0.0174 0.033 0.0225 0.0197 0.0153 0.0193 0.0192 0.0149 

σc_2 0.0237 0.0234 0.0174 0.036 0.0247 0.0219 0.016 0.0198 0.0216 0.0168 

σq_2 0.0221 0.0236 0.0176 0.032 0.0207  0.019 0.0149 0.0187 0.0184 0.0143 

σc_2 σq_2⁄  1.0761 0.9925 0.9927 1.125  1.192 1.1542 1.0784 1.0571 1.1780 1.1741 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
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Again, CDR and CPS volatilities at q and c had similar characteristics 

throughout 2019 as in 2018, i.e., featured increased rates of return and trading 

volumes. Since allocation procedure was identical as previously described, thus 

a corresponding summary of the optimized portfolio proportions and volatility 

statistics are shown in Table 7. 
 
Table 7. Optimized portfolio proportions and volatility statistics at December 30, 2019 
 

wj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

wBoot_2 0.0703 0.0579 0.0706 0.0976 0.1164 0.1277 0.109 0.0797 0.1309 0.14 

wMC_2 0.0787 0.0587 0.0578 0.0706 0.1395 0.1383 0.0922 0.0892 0.1321 0.1428 

wM_2 0.0844 0.0664 0.1829 0.01 0.01 0.0336 0.1923 0.0947 0.1258 0.2 

Bootstrapping volatility σq_Boot_2 = 0.0078 σc_Boot_2 = 0.0091 σc_Boot_2 σq_Boot_2⁄  = 1.1666 

Monte Carlo volatility σq_MC_2 = 0.0074 σc_MC_2 = 0.0088 σc_MC_2 σq_MC_2⁄  = 1.1898 

Markowitz volatility σq_M_2 = 0.0098 σc_M_2 = 0.0118 σc_M_2 σq_M_2⁄  = 1.1986 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

Similarly to the previously analyzed example, sampling methods in com-

parison to Markowitz approach provided a more diversified allocation. Further-

more, the averaged volatilities for both subsamples q and c were lower, similar 

to their quotients. Interestingly, flight-to-quality effect was less present than at 

the end of 2018 which is presented in Table 8. 
 
Table 8. Correlation spreads for subsamples q and c at 30/12/2019 
 

 CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

CCC –          

CDR 0.0593 –         

CPS −0.0241 −0.0026 –        

JSW 0.0228 −0.0156 0.1201 –       

KGH 0.0705 −0.0103 0.0115 −0.1356 –      

MBK −0.0127 −0.092 −0.0105 −0.0085 −0.0343 –     

PEO 0.0055 0.008 0.1135 0.0551 −0.0618 −0.1723 –    

PGN −0.0689 0.0648 0.0215 0.0246 0.0887 0.0846 0.0928 –   

PKN 0.0003 −0.0504 0.0754 −0.0423 −0.0586 0.0447 −0.0281 0.0332 –  

PZU 0.046 0.0077 0.0035 −0.0369 0.0655 0.0326 0.0423 0.0499 0.042 – 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

Another, third set of portfolios was prepared for the end of March 2020 

(i.e., March 31, 2020), as such the input data included logarithmic rates of return 

of 1, 433 trading day observations (period extended by 63 trading days since the 

end of 2019). Afterwards, due to the risk benchmark volatility criterion, the input 
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data were segregated so that data set q comprised of 1,037 trading days and data 

set c included 396 trading days. As such, the data sets were described by volatili-

ties depicted in Table 9. 
 
Table 9. Segregated data volatilities at 31/03/2020 
 

σj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

σ3 0.026 0.0245 0.0178 0.0369 0.0258 0.0216 0.0173 0.0204  0.02 0.0159 

σc_3 0.0347 0.0266 0.0192 0.0402 0.0286 0.0283 0.0226 0.0238 0.0242 0.0202 

σq_3 0.0225 0.0234 0.0174 0.0324 0.0207 0.0189 0.0149 0.0188 0.0184 0.0143 

σc_3 σq_3⁄  1.5411 1.135 1.1029 1.2427 1.3852 1.4925 1.5195 1.2665 1.3132 1.4148 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

In March 2020, there was observed the deepest slump in the valuations of 

securities since the subprime crisis not only across Warsaw Stock Exchange 

indexes but also at major stocks around the world. As a rule, the sudden increase 

in volatility within the financial markets was a direct aftermath of the imposed 

lockdowns in real economy due to the SARS-CoV-2 pandemic. In regards to the 

selected portfolio components, the volatility shocks were clearly visible in the 

data set c, either in comparison to the end of 2018 or 2019. Thus, in all cases the 

relationship between the data sets c and q results in values higher than one. Un-

der such circumstances, the allocation procedure, with consequently the same 

assumptions as previously, was executed and the obtained portfolio proportions 

and volatility statistics are included in Table 10. 
 

Table 10. Optimized portfolio proportions and volatility statistics at March 31, 2020 
 

wj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

wBoot_3 0.1628 0.0461 0.0496 0.0336 0.0953 0.1324 0.1499 0.1026 0.0878 0.1398 

wMC_3 0.1754 0.0310 0.0468 0.0312 0.1316 0.1137 0.1536 0.0726 0.0886 0.1554 

wM_3 0.0517 0.0717 0.2 0.01 0.01 0.01 0.1816 0.1092 0.1558 0.2 

Bootstrapping volatility σq_Boot_3 = 0.0073 σc_Boot_3 = 0.0113 σc_Boot_3 σq_Boot_3⁄  = 1.5456 

Monte Carlo volatility σq_MC_3 = 0.0073 σc_MC_3 = 0.0114 σc_MC_3 σq_MC_3⁄  = 1.555 

Markowitz volatility σq_M_3 = 0.0099 σc_M_3 = 0.0158 σc_M_3 σq_M_3⁄  = 1.5971 

 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

In line with the results of the preceding examples, it was noted that higher 

level of diversification was observed with the use of sampling methods in com-

parison to Markowitz approach. Correspondingly, the averaged volatilities for 

both subsamples q and c were again lower, similarly as their quotient. In terms 

of the flight-to-quality effect, it was clearly noticed that correlation spreads be-

tween crisis and non-crisis periods were on their rise (Table 11). 
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Table 11. Correlation spreads for subsamples q and c at March 31, 2020 
 

 CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

CCC –          

CDR −0.0724 –         

CPS −0.1406 0.0733 –        

JSW 0.0606 −0.1154 −0.0292 –       

KGH −0.0205 0.0813 0.0229 −0.1063 –      

MBK 0.0259 −0.0008 −0.0151 0.0027 −0.0517 –     

PEO −0.0551 0.1184 −0.109 −0.0253 0.0576 −0.026 –    

PGN 0.0362 −0.0217 −0.0305 −0.0589 0.0713 0.0191 −0.0007 –   

PKN −0.0056 −0.025 −0.0569 −0.002 −0.0025 −0.0889 −0.0058 −0.0082 –  

PZU −0.0105 0.1547 −0.0269 −0.1366 −0.0537 −0.0628 −0.0201 0.09 0.0012 – 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

Finally, fourth set of portfolios was composed for the beginning of June 2020 

(i.e., June 1, 2020). Hence, at that moment, the input data consisted of logarith-

mic rates of return of 1, 474 trading day observations (period extended by 104 

trading days since the end of March 2020). Next, the input data were segregated 

in accordance with the risk benchmark volatility criterion, therefore set q includ-

ed logarithmic rates of return of 1,071 trading days, whereas data set c included 

logarithmic rates of return of 403 trading days. These data sets were described 

by volatilities shown in Table 12. 

 
Table 12. Segregated data volatilities at June 1, 2020 
 

σj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

σ4 0.0282 0.0246 0.0179 0.037 0.0262 0.022 0.0178 0.0204 0.0203 0.0162 

σq_4 0.0354 0.027 0.0193 0.0402  0.029 0.0283 0.0236 0.0238 0.0244 0.0202 

σq_4 0.0258 0.0235 0.0175 0.0328 0.0212 0.0196 0.0154 0.0188 0.0187 0.0148 

σc_4 σq_4⁄  1.3722 1.1484 1.1012 1.2267 1.3659 1.4429 1.5347 1.2644 1.3046 1.3706 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

As presented in Figure 1, at the beginning of June 2020 at Warsaw Stock 

Exchange an elevated short-term volatility (i.e., 1M) was accompanied by an 

increased medium-term volatilities (i.e., 3M and 6M). Thus, similarly as at the 

end of March 2020, the relationship between the data sets q and c was always  

a value higher than one. Taking into consideration the underlying conditions, the 

allocation was done again with the presented, predefined assumptions. Corre-

spondingly, the portfolio proportions and volatility statistics are included in  

Table 13. 
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Table 13. Optimized portfolio proportions and volatility statistics at June 1, 2020 
 

wj CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

wBoot_4 0.0934 0.0471 0.055 0.0511 0.1223 0.1329 0.1598 0.0858 0.1031 0.1494 

wMC_4 0.1116 0.0452 0.0515 0.0371 0.1214 0.1687 0.1489 0.082 0.0847 0.149 

wM_4 0.0346 0.0836 0.2 0.01 0.01 0.01 0.1781 0.1213 0.1525 0.2 

Bootstrapping volatility σq_Boot_4 = 0.0075 σc_Boot_4 = 0.0114 σc_Boot_4 σq_Boot_4⁄  = 1.5234 

Monte Carlo volatility σq_MC_4 = 0.0075 σc_MC_4 = 0.0113 σc_MC_4 σq_MC_4⁄  = 1.5158 

Markowitz volatility σq_M_4 = 0.0103 σc_M_4 = 0.0158 σc_M_4 σq_M_4⁄  = 1.5313 

 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

In consistence with the results of the previous examples, allocation with the 

use of sampling methods in comparison to Markowitz’s approach provided more 

diversified portfolios. Furthermore, the averaged volatilities for both subsamples 

q and c remained again lower, which also resulted in their lower quotients. Per-

taining to the flight-to-quality effect, a relatively worrying relationship between 

correlations and volatilities was observed (correlations spreads were decreasing). 

Such observations suggest the presence of contagion phenomena. A relevant 

correlation summary is presented in Table 14. 

 
Table 14. Correlation spreads for subsamples q and c at June 1, 2020 
 

 CCC CDR CPS JSW KGH MBK PEO PGN PKN PZU 

CCC –          

CDR −0.0417 –         

CPS 0.0024 −0.0452 –        

JSW 0.0715 0.0525 −0.1112 –       

KGH −0.0274 0.0396 0.0443 0.0162 –      

MBK 0.0682 −0.1184 0.0223 −0.0652 −0.1032 –     

PEO −0.1045 0.0139 −0.0533 0.0817 −0.0295 −0.0788 –    

PGN −0.0314 0.1184 0.027 −0.0087 0.0898 0.0727 −0.0499 –   

PKN 0.0813 −0.1282 0.028 −0.0498 0.0134 0.0709 0.0364 0.0441 –  

PZU −0.0108 0.0221 −0.0414 −0.0609 −0.0307 0.1008 0.0416 0.0295 −0.0308 – 
 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 

 
 

4. Discussion and backtesting 
 

Consistent for all considered allocations, sampling methods produced more 

diversified portfolios which, simultaneously, provided lower averaged volatili-

ties for both subsamples q and c in comparison to Markowitz’s approach. How-

ever, in order to verify if historically obtained market volatility-robust portfolios 
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reduced the necessity of investment position rebalancing (which, inter alia, dimin-

ishes related transaction costs) in consecutive time periods an allocation backtesting 

was performed. In that manner, optimized proportions from previously analyzed 

time periods were substituted for their next time period counterparts. In that manner, 

a summary of backtesting volatility calculations is included in Table 15. 
 
Table 15.  Backtested portfolio proportions and volatility statistics at December 30, 

2019, March 31, 2020 and June 1, 2020 
 

December 30, 2019 

Bootstrapping volatility σq_Boot_B1 = 0.0063 σc_Boot_B1 = 0.0071 σc_Boot_B1 σq_Boot_B1⁄  = 1.1323 

Monte Carlo volatility σq_MC_B1 = 0.0061 σc_MC_B1 = 0.007 σc_MC_B1 σq_MC_B1⁄  = 1.1417 

Markowitz volatility σq_M_B1 = 0.0099 σc_M_B1 = 0.0117 σc_M_B1 σq_M_B1⁄  = 1.1909 

March 31, 2020 

Bootstrapping volatility σq_Boot_B2 = 0.0063 σc_Boot_B2 = 0.0091 σc_Boot_B2 σq_Boot_B2⁄  = 1.4314 

Monte Carlo volatility σq_MC_B2 = 0.0063 σc_MC_B2 = 0.0092 σc_MC_B2 σq_MC_B2⁄  = 1.4481 

Markowitz volatility σq_M_B2 = 0.0098 σc_M_B2 = 0.0161 σc_M_B2 σq_M_B2⁄  = 1.6427 

June 1, 2020 

Bootstrapping volatility σq_Boot_B3 = 0.0067 σc_Boot_B3 = 0.0102 σc_Boot_B3 σq_Boot_B3⁄  = 1.5059 

Monte Carlo volatility σq_MC_B3 = 0.0072 σc_MC_B3 = 0.0106 σc_MC_B3 σq_MC_B3⁄  = 1.4708 

Markowitz volatility σq_M_B3 = 0.0103 σc_M_B3 = 0.0158 σc_M_B3 σq_M_B3⁄  = 1.5369 

 

Source: Based on data from Warsaw Stock Exchange statistical data (2020). 
 

In view of what has been said, it was observed that the suggested frame-

work efficiently minimizes the unfavorable effects of increased market volatility 

in an investment portfolio allocation problem by providing less risky portfolios. 

Therefore, it seems that surprisingly little attention is paid in the literature to the 

use of multiple scenario analysis in solving the portfolio formulation problem.   
 
 

5. Conclusions 
 

5.1. Research contributions 
 

This paper adopts a unique model under the modified Markowitz’s approach 

with the use of sampling methods to improve the efficiency of allocation in a securi-

ty portfolio composition procedure at an increased market volatility, thus contributes 

to the existing methods of overcoming the risk of not receiving an optimal solution 

in the attribution of investment proportions. The research also adds a rationale to 

implement the developed quantitative framework to the literature and to practical 

use either in individual or institutional investors’ strategies. 
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5.2. Research implications 

 

The computational results highlight that, first, in order to obtain a more di-

versified investment portfolio, it is important to surpass the limitations of a sin-

gle sample analysis that may be biased, e.g., due to statistical properties of ex-

pectations of rates of return (especially, if outliers are observed or rates of return 

are asymmetrically distributed). In that manner, a portfolio formulation proce-

dure with the use of sampling methods is proved to provide a less concentrated 

allocation in comparison to, e.g., Newton’s method, typically used for optimiza-

tion under Markowitz’s approach in portfolio theory. Second, the analyzed aver-

aged volatilities for both subsamples representing quiescent and stress periods 

are lower in value. As intended, this resulted in their lower quotient and further 

means that portfolios formulated with the use of multiple samples derived either 

from an empirical distribution or a theoretical distribution are less risky. In the 

end, all of the above enhance the investment decision-making process. 

 
 

5.3. Research limitations and further development 

 

Further research is required in order to determine if similar conclusions are 

directly applicable to other jurisdictions and, importantly, to different asset  

classes. Currently, this paper puts emphasis on model verification based on pub-

licly available input data of WIG20 traded blue-chip securities, thus all influen-

tial market characteristics are mostly local. Additionally, since sampling methods 

may be used for a wide variety of rates of return distribution classes and for risk 

measures other than variance, it seems interesting to improve the analysis with 

the use of, e.g., CVaR (i.e., a coherent risk measure).  
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