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Abstract 
 

When a ranking is obtained for a set of projects, the introduction of a new 
project, worse than the others, may sometimes perturb the ranking. This is 
called rank reversal, and happens in most Multi Criteria Decision Making 
models. The purpose of this paper is to demonstrate that a new method, based 
on Linear Programming, is immune to rank reversal, which is proved by ana-
lyzing the algorithm used to solve the problem. The paper also examines  
a situation that produces rank reversal when two or more projects have close 
or identical values. 
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1 Introduction 
 

Given a Multiple Criteria Decision-Making (MCDM) scenario, for instance with 
four projects A-B-C-D, subject to several criteria and solved by any method, the 
result indicates preference of some projects over others and this prefer-
ence/equality constitutes a ranking. For instance, in this case the ranking – ob-
tained using any decision-making method – could be: B ≽ A ≽ D ≽ C. The 
symbol ‘≽’ means is preferred to or equal to, or precede; therefore, B is pre-
ferred to A, which is preferred to D, which is preferred to C. Rank Reversal (RR) 
produces changes in the ranking by altering or even reversing the order of pref-
erences. Rank reversal was observed by Belton and Gear (1983) in the Analytic 
Hierarchy Process (AHP) (Saaty, 1987). Rank reversal is considered undesirable 
since it shows weakness in the model used for decision-making. Some authors 
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suggest that a comparison between different models to determine the most ap-
propriate and reliable one – something that has not been achieved yet – could be 
made by taking into account robustness and strength that is, preserving ranking 
stability when the original system of projects is modified by changing the num-
ber of projects. Wang and Triantaphyllou (2006) and Maleki and Zahir (2012) 
performed an exhaustive analysis of the occurrence of RR in different models. 
Experience shows that several scenarios may alter a ranking, namely: 
1. Adding a worse project. 
2. Adding a better project. 
3. Adding a project which is nearly or entirely identical to another one. 
4. Deleting a project. 
 

The addition of a new project E, worse than any in the ranking, can some-
times disrupt the ranking. Common sense and intuition say that if E is worse 
than all the others, it should go to the end of the ranking, and then the ordering 
should not be altered. Conversely, if E is better than all the others, it should go to 
the top of the ranking, but without altering the order. Neither case produces RR 
but placing the new project in some other, intermediate position in the ranking 
may do so. 

 

For instance, the ranking above can be written as E ≽ B ≽ A ≽ D ≽ C, if E is 
the best project, or as B ≽ A ≽ D ≽ C ≽ E if it is the worst one, or as B ≽ A ≽ E ≽ ≽ D ≽ C if it is better than D and C. Observe that the ranking preserves the or-
dering since it has incorporated only the preference of E over D and C. If E is 
identical to any other element of the original set, its inclusion will not produce 
RR, and therefore does not influence the ranking. This is what common sense 
says, but the real-life situation may be different. 

 

There is no doubt about the necessity of determining the causes for this ‘phe-
nomenon’ and diverse theories have been developed to explain it. Analysis and 
discussions have been going on for years and different explanations have been 
given. Let us start here by analyzing a new project or vector whose components 
are: 1) its contribution relative to the associated cost or benefit (Cj), and 2) its 
performance values for the set of criteria (aij). 

 

In this paper four cases are analyzed. The literature on RR asserts that if  
a worse project is introduced no changes should be produced in the ranking. But 
how do we define a worse or a better project? This is a fundamental issue but it 
is not addressed here. From this author’s point of view this is the nub of the 
question, because on what basis can we assert that a project vector is worse or 
better than others? Noting that a new project has a lesser cost or a larger benefit 
(Cj) than others is not enough; the (aij) values also play a very important if not  
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a larger role than (Cj). Comparing the influence of its performance values (aij), 
however, is a more complicated issue and not an obvious one, because for a par-
ticular criterion a certain value (aij) of the new project can be better than the cor-
responding value of other projects, while for another criterion it could be the op-
posite, taking into account the action of each criterion, of course.  

 

Assume, as usual in Linear Programming (LP), that columns represent pro-
jects and rows represent criteria. It can happen, for instance, that for criterion i3 
the performance value (a34) (i.e. the performance value in the third row or crite-
rion (3) and the fourth column or project (4)), is better than any other perform-
ance value for this row, while for criterion i2 it is the opposite. In addition, most 
models use weights for criteria, and then it may happen that criterion i3 has more 
influence than criterion i2, which can produce a change in the ranking.  

 

According to Wang and Triantaphyllou (2008), a reliable and stable method 
for decision-making should not produce RR, when subject to any of the three 
different tests: 

 

Test number 1: ”An effective MCDM method should not change the indication 
of the best project when a non-optimal project is replaced by another worse project 
(given that the relative importance of each decision criterion remains unchanged”. 

Test number 2: ”The rankings of projects by an effective MCDM method 
should follow the transitivity property”. 

Test number 3: ”For the same decision problem and when using the same 
MCDM method, after combining the rankings of the smaller problems that an 
MCDM problem is decomposed into, the new overall ranking of the projects be 
identical to the original overall ranking of the un-decomposed problem”. 

 

Other researchers believe that the most difficult situation appears when two pro-
jects have very close performances (or are nearly identical), or when they are iden-
tical (see Saaty, 1987; Belton and Gear, 1983). Cascales and Lamata (2012), even 
assert that ”It is well known that when the projects are very close the order between 
them can depend on the method used on their evaluation” (see also Li, 2010). 

 

As an example in the case of a maximization criterion, the new project may 
have a performance that is worse than all of the others with respect to that crite-
rion, or better, or in between. Consequently, stating that a new project vector is 
worse than those already existent, we mean that all performances with respect to 
all criteria, as well as the corresponding (Cj), must be worse than the others 
which in reality is possible but uncommon. Some authors (Wang and Trian-
taphyllou, 2008) try to analyze this issue by using random numbers in a simula-
tion, which certainly may correspond to reality for a new project vector.  
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This author’s opinion is that there could be situations where the existence of 
better performances can lead to a change of the ranking – but not to a RR. That 
is, if a raking shows a D > B > A > C > E > F, the introduction of a new alterna-
tive G, which is better than C, or G > C, means that the new ranking will be  
D > B > A > G > C > E > F. As seen, the new ranking does not show changes in 
the other precedence. 

 

The objective of this paper is to demonstrate that a new model called SIMUS – 
Sequential Interactive Model of Urban Systems (Munier, 2011a and 2011b; 
Teames International, 2014), is not subject to RR. To prove this assertion it is nec-
essary to know how this model works, and this is briefly explained in Section 2. 
 
2 The SIMUS model 
 

It is assumed that the reader has some knowledge of the LP technique (Kan-
torovich, 1939); see MIT (2016) for very clear explanation and examples, as 
well as Romero and Balteiro (2013). LP is taught in most undergraduate courses 
on MCDM, and therefore it is not explained here. Instead we provide here a de-
tailed explanation of how SIMUS works. When LP is applied to an initial deci-
sion matrix, with the purpose of maximizing or minimizing an objective func-
tion, it uses the Simplex algorithm (Dantzig, 1963), which identifies the best 
solution. This is Pareto efficient, and consequently cannot be improved, that is, it 
is optimal. The Simplex algorithm is solved, for instance, by the ‘Solver’ soft-
ware (FrontLineSystems, 2015), which is used in SIMUS. 
 

As an example, consider three projects subject to five criteria as shown in the 
initial matrix of Figure 1, a problem that will be solved via the SIMUS model, in 
order to explain its functioning. 

To understand this model it is necessary to take into account that for SIMUS, 
objective functions and criteria are equivalent, because both are linear functions, 
and both are subject to maximization, minimization or equalization. Conse-
quently, in the initial matrix all criteria are at some moment used as objective 
functions. A thorough explanation of SIMUS with many examples can be found 
in TEAMES International (2004), and downloaded as free fully operational 
software from decisionmaking.esy.es. 
 

SIMUS starts by using the first criterion as the objective function, by remov-
ing it from the decision matrix, and the Simplex algorithm determines the best 
solution or project, if such a solution exists. This preference is visualized by 
comparing values or scores that the algorithm assigns to each project (the higher 
the better). Thus, when the first objective is processed, the result is saved in  
a matrix called Efficient Results Matrix (ERM) and indicates that project 1 has 
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the score of 0.57, project 2 has the score of 0.91, while project 3 has the score  
of 0, meaning that this last project is not a part of the solution. Consequently, ac-
cording to this first objective, the best solution is project 2, although the two 
scores are Pareto efficient or optimal. 
 

When the second criterion is used as objective function it appears that only 
project 3 is selected with the score of 1, while the lack of positive values in the 
other two projects indicates that these are not selected by this objective. The 
same procedure is followed for criteria 3, 4 and 5 and the respective scores are 
saved in the ERM matrix. Since criteria may have different units they have to be 
normalized, and then the normalized Efficient Result Matrix (ERM) is built. Any 
normalization system can be used, and SIMUS allows to choose from Total sum 
in a row, Maximum value in a row, Euclidean formula and Min-Max. Whatever 
the system chosen, the results or ranking are not changed. 
 

The next stage is to add up all values in each column (SC), which gives, for 
instance, the score of 2.27 for project 2. Note that projects 2 and 3 satisfy three 
criteria each, while project 1 satisfies only two; their relation with the total num-
ber of criteria constitutes the Participation Factor (PF). That is, project 1 has  
a participation of 2/5 while projects 2 and 3 participate with 3/5 each. This par-
ticipation is used as a weight for projects since a large number of PF means that 
the corresponding project satisfies more criteria. These (PF) are then normalized 
resulting in the Normalized Participation Factor (NPF). This ratio is obtained 
taking into account the number of values and the number of criteria as men-
tioned above, thus, for instance, for project 1 it is 2/5 = 0.4. 

For each project or column, the (NPF) is then multiplied by the column sum (SC) 
and its product constitutes the score for that project, as can be seen in the boxed row. 
The higher the better, consequently, the best project is 2 followed by projects 3 and 1. 
This allows for building the ERM ranking as depicted. Thus, this result was obtained 
taking into account for each project its values for all criteria. 
 

In the second stage SIMUS considers the values by row in the ERM matrix, 
that is, it analyzes for each criterion its values for all projects. Here the model 
finds the differences with all the other values in the same row, starting from the 
highest value in the first row. The result is saved in a new square matrix formed 
by the projects. This new matrix is called Project Dominance Matrix or PDM. 
The process is repeated for the same row for the next highest value and this pro-
cedure is repeated with all the values. That is, the model finds the degree by 
which a project dominates or outranks another.  
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Next, all values in a row are added; the result gauges the dominance of a pro-
ject in that row. Thus, project 1 has the dominance value of 1.9. The same addi-
tion is applied to each column, and the model finds the degree by which a pro-
ject is outranked by or subordinated to another. In this case, project 1 has the 
subordinate value of 3.2. The net difference for the same project gives the net 
value as a score. Thus, the score for project 1 is 1.9 – 3.2 = -1.3. 
 

SIMUS orders them in decreasing order and constructs a ranking. Even when 
scores are different for the same project in ERM and PDM, their rankings coin-
cide, that is: Ranking from ERM = Ranking from PDM. 
 

Consequently, the same problem is solved by two different procedures and 
the same ranking is obtained. 

 
 

Figure 1. Initial matrix, and ERM and PDM matrices in the SIMUS method 

                         Initial Matrix 
Project 1 Project 2 Project 3

Criterion 1 0.23 0.91
Criterion  2 0.63
Criterion 3 0.50
Criterion 4 1.18 0.56 1.18
Criterion 5 0.29 1.89 1

                               After running Simplex with all objectives this is the resulting efficient matrix
           Efficient Results Matrix (ERM) 

Project 1 Project 2 Project 3
Criterion 1 0.57 0.91
Criterion  2 1
Criterion 3 1
Criterion 4 3.96 0.74
Criterion 5 1 0.53

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3

Criterion 1 0.38 0.62
Criterion  2 1
Criterion 3 1
Criterion 4 0.84 0.16
Criterion 5 0.66 0.34

          Sum of Column (SC) 1.22 2.27 1.50 Number of criteria
         Participation Factor (PF) 2 3 3 5

         Norm. Participation Factor (NPF) 0.40 0.60 0.60

         Final Result (SC x NPF) 0.49 1.36 0.90

ERM Ranking  Project 2 - Project 3 - Project 1 

Project Dominance Matrix (PDM)

Subordinated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 dominant projects Net dominance

Project 1 0.8 1.1 1.9 -1.3

Project 2 1.9 1.9 3.8 1.8

Project 3 1.3 1.2 2.5 -0.5

                     Column sum of subordinated projects 3.2 2.0 3.0

PDM Ranking  Project 2 - Project 3 - Project 1 
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3 Why SIMUS does not produce rank reversal? 
 

The simple and straight answer is: because it is based on the Simplex algorithm 
that does not allow it. To understand this very important algorithm, consider the 
following problem: 
 

Table 1 shows the initial data of an example, which consists in selecting the 
best project of a renewable energy power plant using one of two sources of re-
newable energy: Solar energy (x1) and Photovoltaic (x2). Its elements are: 
 

Table 1: Initial data 
 

 Projects or projects    
 Solar energy Photovoltaic    

 x1 x2    
Unit cost (Cj) 0.72 0.68 Objective function Z = 0.72 x1 + 0.68 x2 (MIN) 

Criteria 
Project’s or projects’ contributions 

(aij) or performances 
Action Action operator

Constant value 
(B) 

Efficiency index 0.85 0.75 MAX ≤ 1 
Financial index 0.78 0.98 MIN ≥ 0.84 
Land use index 0.92 0.65 MAX ≤ 0.94 
Generation index 0.99 0.60 MIN ≥ 0.80 

 
Z is the objective function minimizing the total unit cost. Its equation is  

Z = 0.72, x1 + 0.68 x2. 
Cj: Unit cost related to each project.  
0.72: (C1), unit cost for project x1. 
0.68: (C2), unit cost for project x2. 
aij: Values corresponding to alternatives x1 and x2 for all criteria. The problem 
consists in determining the values of x1 and x2 that satisfy the objective function. 

The simplex algorithm starts with this initial matrix arranged in the form of  
a tableau as shown in Table 2. 
 

Table 2: First Simplex tableau 
 

 
 

Cj 0.72 0.68 0 0 0 M M Ratio
Basic bi x1 x2 s1 s2 s3 A1 A2

0 s1 1 0.85 0.75 1 1.18
M A1 0.84 0.78 0.98 -1 1 0.93
0 s3 0.94 0.92 0.65 1 1.02
M A2 0.8 0.99 0.6 1 0.81 Key row

Objective function Zj 1.64M 1.77M 1.35M 0 0 0 M M
Index row Cj - Zj 0.72-1.77M 0.68-1.75M 0 0 0 0 0

Key column
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The tableau includes artificial variables Aj for minimization (using the ≥ op-
erator in the corresponding equation), with a very large cost value M, and slack 
variables sj for maximization (using the ≤ operator), to convert the inequalities 
to equations, and with cost values equal to ‘0’. At the beginning of the computa-
tion the objective function Z = 1.77M, that is (0.78M + 0.99M), which is ex-
tremely high and corresponds to artificial variables or projects A1 and A2, both 
of which constitute the initial solution of the problem. This is the starting point 
for the computation. To improve this performance the Simplex algorithm uses 
two indexes: The Index row (Cj-Zj) and the Key row (bi/aij), where bi is the 
right hand side value for the ith criterion. 

The first index selects the variable to be entered into the system to improve the 
solution, that is, to decrease the cost. This is obtained by selecting the most negative 
value in the index row (0.72-1.77M); in this case the most negative value is related 
to alternative or project x1 (Solar energy). The corresponding column (shaded), is 
called Key column. To preserve the dimensions of the problem (this is a two dimen-
sional problem, because we have two projects), it will be now necessary to eliminate 
one of the artificial projects. This is done by using the key row (shaded), which indi-
cates that A2 must be eliminated – see Chinneck (2000), for a justification. In the 
next step the algorithm recalculates the complete matrix, because the basis has 
changed, and we get the second Simplex tableau shown in Table 3. 
 

Table 3: Second Simplex tableau 
 

 
Note that project x1 is now a unit vector, and therefore is in the basis. The ob-

jective function is now: Zj = 0.51M + 0.44, that is (0.51xM + 0.61 x 0.72), 
which is still a very high value, but considerably less than the first one. There-
fore the cost has been reduced. The process is now repeated, i.e, the algorithm 
looks for the most negative Cj-Zj value and finds that it corresponds to project 2 
(Photovoltaic) (0.44-0.51M). The key row index is applied again and then the ar-
tificial project A1 is removed. The process continues until there is no more nega-
tive Cj-Zj, as shown in Table 4. As can be seen there are no more negative Cj-Zj 
and this indicates that the final and optimal solution has been reached with x1 
(Solar) = 0.56 and x2 (PV) = 0.41. 

 

Cj 0.72 0.68 0 0 0 M M Ratio
Basic bi x₁ x₂ s₁ s₂ s₃ A₁ A₂

0 s₁ 0.31 0.23 1 -0.86 0.36
M A₁ 0.21 0.51 -1 1 -0.79 0.27 Key row
0 s₃ 0.00 0.09 1 -0.93 -0.19

0.72 x₁ 0.81 1 0.61 1.01 -0.80
Objective function Zj 0.21M 0.72 0.51M+0.44 0 -M 0 M 0.79M

Index row Cj - Zj 0 0.44-0.51M 0 M 0 0 0.21M
Key column



                                              A New Approach to the Rank Reversal Phenomenon… 
 

 

145 

Table 4: Third Simplex tableau 
 

 
 

The process has been explained in some detail to show how the Simplex al-
ways selects a better project, based on its Cj and its aij values (from Zj). In  
a more complicated scenario, the number of projects and criteria is irrelevant; the 
Simplex will select only those projects that improve previous solutions; conse-
quently, it is impossible to select a project that does not satisfy this condition. 
 
3.1 Adding a new project 
 

Let us see now how the system reacts when a new project is introduced about 
which we do not know if it is better or worse than the existing projects.  
Of course, with the introduction of this new project, the original problem with 
n projects has changed, and so it is a new one. The new problem will have  
n + 1 projects, but the same rules apply. Assume that to our original problem 
with two projects we add a third one (x3). If we apply the Simplex to this new 
problem the algorithm will perform as before when there were two projects. 
Consequently, if C3-Z3 of the new project is positive respecting to C1-Z1 and C2-Z2, 
this new project will never be selected. This is the reason why no rank reversal can 
be produced in SIMUS. However, if the cost of opportunity of x3 is better than the 
cost of opportunity of x1 and x2, then the new project will be selected as the best pro-
ject in the ranking. Naturally, this is not rank reversal, but the result of introducing  
a new project that is better than the existent ones. However, even in this last case the 
original order in the ranking must be preserved. A complete and thorough explana-
tion of the Simplex Tableau is found in Kothari (2009) and in MIT (2016). 
 
3.2 Adding an exact copy of an existing project 
 

According to some researchers the most likely scenario for RR is when two pro-
jects (or the existing one and a new vector) are nearly or entirely identical. In 
this section we analyze this case and demonstrate that SIMUS is immune to this 
phenomenon. For instance, we can introduce a new project x3 identical to x1 to 
our solar power problem (both are shaded in Table 5).  
 

Cj 0.72 0.68 0 0 0 M M
Basic bi x₁ x₂ s₁ s₂ s₃ A₁ A₂

0 s₁ 0.22 1 0.46 -0.46
0.68 x₂ 0.41 1 -1.97 1.97 -2

0 s₃ 0.00 0.18 1 -0.09
0.72 x₁ 0.56 1 1.19 -1.19

Objective function Zj 0.68 0.72 0.68 0 -0.48 0.00 0.68 0.73
Index row Cj - Zj 0 0 0 0.48 0 M-0.68 M-0.73
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Table 5: First Simplex tableau – introducing x3 identical to x1 
 

 
 

This demonstrates that if we have two identical vectors as projects, the sys-
tem considers only one of them and rejects the other one. Consequently the rank-
ing is preserved. 

According to the rule it will be now logical to introduce x1 or x3 since both 
have the largest negative value. We can introduce either, because when trans-
formed they will both be basic variables, but only one of them will be in the so-
lution (see Table 6). 
 

Table 6: Second Simplex tableau 
 

 
 

Continuing with the process we must select x2 as the entering variable and crite-
rion 2 (A1) (shaded), as the leaving variable. The transformation values are in Table 7.  
 

Table 7: Third Simplex tableau 
 

 
 

The outcome has the same values as before and the same ranking.  
 
3.3 Demonstration of absence of RR in SIMUS when more than  

a single project is added  
 

Starting from an initial problem several scenarios are proposed. Note that these 
involve much stricter conditions as those found in the literature on RR where, in 
general only one scenario is examined at a time, while here we are using more 
than one and even mixing different scenarios.  

Cj 0.72 0.68 0.72 0 0 0 0 M Ratio
Basic bi x₁ x₂ x₃ s₁ s₂ s₃ A₁ A₂

0 s₁ 1 0.85 0.75 0.85 1 1.18
M A₁ 0.84 0.78 0.98 0.78 -1 1 0.93
0 s₃ 0.94 0.92 0.65 0.92 1 1.02
M A₂ 0.8 0.99 0.6 0.99 -1 0.81 Key row

Objective function Zj 1.64M 1.77M 1.35M 1.77M 0 0 0 -M M
Index row Cj - Zj 0.72-1.77M 0.68-1.75M 0.72-1.77M 0 0 0 M 0

Key column

Cj 0.72 0.68 0.72 0 0 0 0 M Ratio
Basic bi x₁ x₂ x₃ s₁ s₂ s₃ A₁ A₂

0 s₁ 0.23 1 -0.86 0.36
M A₁ 0.51 -1 1 -0.79 0.27 Key row
0 s₃ 0.09 1 -0.93 -0.19

0.72 x₁ 1 0.61 1 1.01 -0.80
Objective function Zj 0.21M 0.72 0.51M+0.44 0.72 0 -M M M 0.79M

Index row Cj - Zj 0 0.44-0.51M 0 0 M 0 0 0.21M

Cj 0.72 0.68 0.72 0 0 0 M M
Basic bi x₁ x₂ x₃ s₁ s₂ s₃ A₁ A₂

0 s₁ 1 0.46 -0.46
0.68 x₂ 0.41 1 -1.97 1.97 -2

0 s₃ 0.18 1 -0.09
0.72 x₁ 0.56 1 1 1.32 -1.19

Objective function Zj 0.68 -0.48 0 0.08 1
Index row Cj - Zj 0 0 0 0.48 0 0 M-0.68 M-0.73
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3.4 Solving a problem with SIMUS software 
 

Assume the initial matrix shown in Table 8 with five projects (in bold case) is given. 
Projects 6, 7 and 8 are added later. The system uses Euclidean normalization but, as 
mentioned before, any other can be used. This case is solved using SIMUS software 
and the result is shown on the last screen (Figure 2). Observe that SIMUS provides 
two solutions in its ERM and PDM matrices. The ERM solution is found in the solid 
black row while the PDM solution is in the solid black PDM column. Note, how-
ever, that both ERM and PDM rankings are identical. 
 

Table 8: Initial decision matrix with five projects 
 

Initial decision matrix Added project 
Added 
project 

Added 
projects 

 

Project 
1 

Project 
2 

Project 
3 

Project 
4 

Project 
5 

Project 6 
worse 

than any 
original 

Project 7 
better 

than any 
original 

Project 8 = 
Project 3 

Action 

6200 6050 4800 5100 3800 3600 6500 4800 MAX 
3 4.2 2.5 6.1 3.10 2.4 6.5 2.5 MAX 

20 20 21 30 32 35 18 21 MIN 
4 3 2.5 3 5 2.4 5.5 2.5 MAX 

 

The result is: 4 ≽ 5 ≽ 3 ≽ 2 ≽ 1. 
 

 
Figure 2. The original problem – the final screen of SIMUS showing the results for the initial set 

of projects (5) 

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3 Project 4 Project 5

Target 1 0.32 0.68
Target 2 1.00
Target 3
Target 4 1.00

          Sum of Column (SC) 0.00 0.32 0.68 1.00 1.00 Number of targets
         Participation Factor (PF) 0 1 1 1 1 4

         Norm. Participation Factor (NPF) 0.00 0.25 0.25 0.25 0.25

     Final Result (SC x NPF) 0.00 0.08 0.17 0.25 0.25

ERM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 

Project Dominance Matrix (PDM)

Dominated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 Project 4 Project 5 dominant projects Net dominance

Project 1 0.0 -3.0
Project 2 0.3 0.3 0.3 0.9 -1.4
Project 3 0.7 0.4 0.7 0.7 2.4 0.4
Project 4 1.0 1.0 1.0 1.0 4.0 2.0
Project 5 1.0 1.0 1.0 1.0 4.0 2.0

    Column sum of dominated projects 3.0 2.4 2.0 2.0 2.0

PDM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 
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3.4.1   Adding project 6 ‘worse’ than the others 
 

Now we add project 6, which is obviously worse than any other since its per-
formances are lower in maximization and higher in minimization. Figure 3 
shows the result, which as can be seen replicates the ranking of the situation with 
only five projects. Project 6 is added but with ‘0’ score’ in the ERM matrix, 
meaning that it is not considered. 
 
Output: Original ranking preserved. 
 

 
Figure 3. The original problem with ‘worse’ project 6 added 
 
3.4.2   Adding project 7 keeping project 6 and with x3 = x6 = x7 
 

Now we keep project 6 identical to project 3 and add project 7 also identical to 3 
and 6 (see Figure 4). The result is again the same ranking: 4 ≽ 5 ≽ 3 ≽ 2 ≽ 1. 
Note that project 6 and 7 have ‘0’ scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3 Project 4 Project 5 Project 6

Target 1 0.32 0.68
Target 2 1.00
Target 3
Target 4 1.00

          Sum of Column (SC) 0.00 0.32 0.68 1.00 1.00 0.00 Number of targets
         Participation Factor (PF) 0 1 1 1 1 0 4

       Norm. Participation Factor (NPF) 0.00 0.25 0.25 0.25 0.25 0.00

      Final Result (SC x NPF) 0.00 0.08 0.17 0.25 0.25 0.00

ERM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 

Project Dominance Matrix (PDM)

Dominated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 dominant projects Net dominance

Project 1 0.0 -3.0
Project 2 0.3 0.3 0.3 0.3 1.3 -1.1
Project 3 0.7 0.4 0.7 0.7 0.7 3.1 1.1
Project 4 1.0 1.0 1.0 1.0 1.0 5.0 3.0
Project 5 1.0 1.0 1.0 1.0 1.0 5.0 3.0
Project 6 0.0 -3.0

    Column sum of dominated projects 3.0 2.4 2.0 2.0 2.0 3.0

PDM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 
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Output: Original ranking preserved. 
 

 
 

Figure 4. Adding projects 6 and 7 identical to project 3 simultaneously 
 
3.4.3  Adding a new project identical to another one and simultaneously 

adding one regarded as the best  
 

We add project 6 which is identical to project 3 and also add project 7 which is 
regarded as the best of all (see Figure 5). The result is: 4 ≽ 5 ≽ 3 ≽ 2 ≽ 1. 
 

Output: Original ranking preserved. 
 

 
Figure 5. Project 6 identical to project 3 and project 7 regarded as the best 

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7

Target 1 0.32 0.68
Target 2 1.00
Target 3
Target 4 1.00

          Sum of Column (SC) 0.00 0.32 0.68 1.00 1.00 0.00 0.00
         Participation Factor (PF) 0 1 1 1 1 0 0

       Norm. Participation Factor (NPF) 0.00 0.25 0.25 0.25 0.25 0.00 0.00

      Final Result (SC x NPF) 0.00 0.08 0.17 0.25 0.25 0.00 0.00

ERM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 - Project 7 

Project Dominance Matrix (PDM)

Dominated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 dominant projects Net dominance

Project 1 0.0 -3.0
Project 2 0.3 0.3 0.3 0.3 0.3 1.6 -0.8
Project 3 0.7 0.4 0.7 0.7 0.7 0.7 3.8 1.8
Project 4 1.0 1.0 1.0 1.0 1.0 1.0 6.0 4.0
Project 5 1.0 1.0 1.0 1.0 1.0 1.0 6.0 4.0
Project 6 0.0 -3.0
Project 7 0.0 -3.0

    Column sum of dominated projects 3.0 2.4 2.0 2.0 2.0 3.0 3.0

PDM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 - Project 7 

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7

Target 1 0.04 0.96
Target 2 1.00
Target 3
Target 4 1.00

          Sum of Column (SC) 0.00 0.04 0.96 1.00 1.00 0.00 0.00
         Participation Factor (PF) 0 1 1 1 1 0 0

       Norm. Participation Factor (NPF) 0.00 0.25 0.25 0.25 0.25 0.00 0.00

      Final Result (SC x NPF) 0.00 0.01 0.24 0.25 0.25 0.00 0.00

ERM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 - Project 7 

Project Dominance Matrix (PDM)

Dominated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7 dominant projects Net dominance

Project 1 0.0 -3.0
Project 2 0.0 0.0 0.0 0.0 0.0 0.2 -2.7
Project 3 1.0 0.9 1.0 1.0 1.0 1.0 5.7 3.7
Project 4 1.0 1.0 1.0 1.0 1.0 1.0 6.0 4.0
Project 5 1.0 1.0 1.0 1.0 1.0 1.0 6.0 4.0
Project 6 0.0 -3.0
Project 7 0.0 -3.0

    Column sum of dominated projects 3.0 2.9 2.0 2.0 2.0 3.0 3.0

PDM Ranking  Project 4 - Project 5 - Project 3 - Project 2 - Project 1 - Project 6 - Project 7 
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3.4.4   Deleting a project from the original portfolio 
 

We are deleting Project 3 (see Figure 6). The result is: 4 ≽ 5 ≽ 2 ≽ 1. 
 

Output: Original ranking preserved. 
 

 
 

Figure 6. Deleting project 3 
 
4 Summary of scenarios and results 
 
Table 9 summarizes our findings. 
 

Table 9: Summary of results for different scenarios 
 

  Ranking Comments 
Result referred 

to ranking 
Original project  

 
Original result taking into 
account only five projects 

or projects 

4 ≽ 5 ≽ 3 ≽ 2 ≽ 1 
Figure 2 

 
Initial  

ranking 

Adding one project  
to original scenario 

 

Adding project 6 
‘worse’ than others 

Project added has worse 
values in all criteria than 

all other projects 

4 ≽ 5 ≽ 3 ≽ 2 ≽ 1 ≽ 6 
Figure 3 

 
Ranking  

preserved 

 

Efficient Results Matrix (ERM) 
Project 1 Project 2 Project 3 Project 4 Project 5

Target 1 0.35 1.21 0.00 0.00 0.00
Target 2 0.00 0.00 0.00 1.22 0.00
Target 3 0.00 0.00 0.00 0.00 0.00
Target 4 0.00 0.00 0.00 0.00 1.63

Efficient Results Matrix (ERM) Normalized 
Project 1 Project 2 Project 3 Project 4 Project 5

Target 1 0.22 0.78
Target 2 1.00
Target 3
Target 4 1.00

          Sum of Column (SC) 0.22 0.78 0.00 1.00 1.00
         Participation Factor (PF) 1 1 0 1 1

     Norm. Participation Factor (NPF) 0.25 0.25 0.00 0.25 0.25

    Final Result (SC x NPF) 0.06 0.19 0.00 0.25 0.25

ERM Ranking  Project 4 - Project 5 - Project 2 - Project 1 - Project 3 

Project Dominance Matrix (PDM)

Dominated projects Row sum of 
Dominant proj. Project 1 Project 2 Project 3 Project 4 Project 5 dominant projects Net dominance

Project 1 0.2 0.2 0.2 0.7 -1.9
Project 2 0.6 0.8 0.8 0.8 2.9 0.9
Project 3 0.0 -3.0
Project 4 1.0 1.0 1.0 1.0 4.0 2.0
Project 5 1.0 1.0 1.0 1.0 4.0 2.0

  Column sum of dominated projects 2.6 2.0 3.0 2.0 2.0

PDM Ranking  Project 4 - Project 5 - Project 2 - Project 1 - Project 3 
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Table 9 cont. 
 

Adding identical  
projects to original  

scenario 
 

Projects 6 and 7  
identical to project 3 

Simultaneous addition plus 
identity with an existing 

project 

4 ≽ 5 ≽ 3 ≽ 2 ≽ 1 ≽ 6 ≽ 7 
Figure 4 

Project 6 and 7 are 
not considered 

since their score 
is ‘0’ 

Ranking  
preserved 

Adding an identical 
project and at the 
same time adding  

another one which is 
regarded as the best 

 

Project 6 identical to 
project 3 and project 7 

regarded as the best 

Simultaneous addition 
of one project identical to 
another existent one plus 

addition of another project 
regarded as the best 

4 ≽ 5 ≽ 3 ≽ 2 ≽ 1 ≽ 6 ≽ 7 
Figure 5 

Project 6 and 7 are 
not considered 

since their score 
is ‘0’ 

Ranking  
preserved 

Projects deletion from 
the original scenario 

 

Delete project 3  
4 ≽ 5 ≽ 2 ≽ 1 ≽ 3 

Figure 6 

Project 3 is elimi-
nated since its 

value is ‘0’ 

Ranking  
preserved 

 
5 Conclusion 
 

The goal of this paper is to demonstrate that when LP is used for decision-
making no RR occurs. This was shown by examining the original algebraic pro-
cedure of the Simplex algorithm created by Dantzig (1963). It clearly reveals 
that the incorporation of a new project regarded as worse than the existing pro-
jects cannot alter the ranking because the algorithm takes into account both the 
contribution (cost or benefit) and the performances of the new project. To put it 
simply, the algorithm works by analyzing and comparing opportunity costs, 
minimizing or maximizing them. It is a well-known fact that RR occurs also 
when a project is deleted from the scenario, or when two projects are nearly or 
entirely identical. These two scenarios were also examined in this paper by 
modifying the original problem and solving each using SIMUS. Four different 
scenarios were considered with more than one project added at the time and also 
including projects with identical data. The author believes that the algebraic 
analysis performed and the examples proposed validate our claim. 
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