Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2006 | 2 | 1 | 21-35

Article title

Investigating neurophysiological correlates of metacontrast masking with magnetoencephalography

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
Early components of visual evoked potentials (VEP) in EEG seem to be unaffected by target visibility in visual masking studies. Bridgeman's reanalysis of Jeffreys and Musselwhite's (1986) data suggests that a later visual component in the VEP, around 250 ms reflects the perceptual effect of masking. We challenge this view on the ground that temporal interactions between targets and masks unrelated to stimulus visibility could account for Bridgeman's observation of a U-shaped time course in VEP amplitudes for this later component. In an MEG experiment of metacontrast masking with variable stimulus on-set asynchrony, we introduce a proper control, a pseudo mask. In contrast to an effective mask, the pseudomask should produce neither behavioral masking nor amplitude modulations of late VEPs. Our results show that effective masks produced a strong U-shaped perceptual effect of target visibility while performance remained virtually perfect when a pseudomask was used. The visual components around 250 ms after target onset did not show a distinction between mask and pseudomask conditions. The results indicate that these visual evoked potentials do not reveal neurophysiological correlates of stimulus visibility but rather reflect dynamic interactions between superimposed potentials elicited by stimuli in close temporal proximity.However, we observed a postperceptual component around 340 ms after target onset, located over temporal-parietal cortex, which shows a clear effect of visibility. Based on P300 ERP literature, this finding could indicate that working memory related processes contribute to metacontrast masking.

Year

Volume

2

Issue

1

Pages

21-35

Physical description

Contributors

  • FC Donders Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands

References

  • Alpern, M. (1953). Metacontrast.Journal of the Optical Society of America, 43, 648-657.
  • Andreassi, J., De Simone, J., & Mellers, B. (1976). Amplitude changes in the visual evoked cortical potential with backward masking.Electroencephalography and Clinical Neurophysiology, 41, 387-398.
  • Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Medola, J. D., Rosen, B. R., & Dale, A. M. (2001). Cortical mechanisms specific to explicit visual object recognition.Neuron, 29, 529-535.
  • Breitmeyer, B. (1984). Visual masking: an integrative approach. New York, NY:Oxford University Press.
  • Breitmeyer, B., & Ogmen, H. (2000). Recent models and findings in visual backward masking: a comparison, review, and update.Perception and Psychophysics, 62, 1572-1595.
  • Breitmeyer, B., Rudd, M., & Dunn, K. (1981). Metacontrast investigations of sustained-transient channel inhibitory interactions.Journal of Experimental Psychology: Human Perception and Performance, 7, 770-779.
  • Bridgeman, B. (1975). Correlates of metacontrast in single cells of the cat visual system.Vision Research, 15, 91-99.
  • Bridgeman, B. (1980). Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination.Brain Research, 196, 347-364.
  • Bridgeman, B. (1988). Visual evoked potentials: concomitants of metacontrast in late components.Perception & Psychophysics, 43, 401-403.
  • Engel, A., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing.Nature Reviews, Neuroscience, 2, 704-716.
  • Engel, A., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness.Trends in Cognitive Sciences, 5, 16-25.
  • Enns, J., & Di Lollo, V. (2000). What's new in visual masking?Trends in Cognitive Sciences, 4, 345-352.
  • Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention.Science, 291, 1560-1563.
  • Grill-Spector, K., Kusnhir, T., Hendler, T., & Malach, R. (2000). The dynamics of object-selective activation correlate with recognition performance in humans.Nature Neuroscience, 3, 837-843.
  • Haynes, J., Driver, J., & Rees, G. (2005). Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex.Neuron, 46, 811-821.
  • Jeffreys, D. A. (1971). Cortical source locations of pattern-related visual evoked potentials recorded from the human scalp.Nature, 229, 502-504.
  • Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin.Experimental Brain Research, 16, 1-21.
  • Jeffreys, D. A., & Musselwhite, M. J. (1986). A visual evoked potential study of metacontrast masking.Vision Research, 26, 631-642.
  • Knösche, T. R. (2002). Transformation of whole-head MEG recordings between different sensor positions.Biomedizinische Technik. Biomedical engineering, 47, 59-62.
  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity.Psychophysiology, 38, 557-577.
  • Kovacs, G., Vogels, R., & Orban, G. A. (1995). Cortical correlate of pattern backward masking.Proceedings of the National Academy of Sciences USA, 92, 5587-5591.
  • Kranczioch, C., Debener, S., & Engel, A. K. (2003). Event-related potential correlates of the attentional blink phenomenon.Cognitive Brain Research, 17, 177-187.
  • Lachter, J., Durgin, F. H., & Washington, T. (2000). Disappearing percepts: evidence for retention failure in metacontrast masking.Visual Cognition, 7, 269-279.
  • Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing.Trends in Neuroscience, 23, 571-579.
  • Ro, T., Breitmeyer, B., Burton, P., Singhal, N., & Lane, D. (2003). Feedback contributions to visual awareness in human occipital cortex.Current Biology, 11, 1038-1041.
  • Rolke, B., Heil, M., Streb, J., & Hennighausen, E. (2001). Missed prime words within the attentional blink evoke an N400 semantic priming effect.Psychophysiology, 38, 165-174.
  • Rolls, E. T., Tovee, M. J., & Panzeri, S. (1999). The neurophysiology of backward visual masking: information analysis.Journal of Cognitive Neuroscience, 11, 300-311.
  • Schiller, P., & Chorover, L. (1966). Metacontrast: its relation to evoked potentials.Science, 153, 1398-1400.
  • Tallon-Baudry, C., & Betrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation.Trends in Cognitive Sciences, 3, 151-162.
  • Vaughan, H., & Silverstein, L. (1968). Metacontrast and evoked potentials: a reappraisal.Science, 160, 207-208.
  • Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink.Journal of Experimental Psychology: Human Perception and Performance, 24, 1656-1674.
  • Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming.Proceedings of National Academy of Sciences, 100, 6275-6280.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0042-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.