Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


2010 | 6 | 103-115

Article title

Thewhatandwhyof perceptual asymmetries in the visual domain

Selected contents from this journal

Title variants

Languages of publication

Abstracts

EN
Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, thewhatof the asymmetries; and in terms of underlying mechanisms, thewhyof the asymmetries. The within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. The between-visual field asymmetries have been reported for a wide range of perceptual phenomena. The foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. This also holds true for object or face recognition and reading performance. The upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. In contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. The left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. The left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, theprimary why, but can be also susceptible to visual experience, thecritical why(promotes or blocks the asymmetries by altering neural functions).

Year

Volume

6

Pages

103-115

Physical description

Contributors

  • Department of Psychology, University of Dhaka, Bangladesh
  • Graduate School of Human and Socio-environment Studies, Kanazawa University, Japan

References

  • Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the "light-from-above" prior.Nature Neuroscience, 7, 1057-1058.
  • Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque.Journal of Neurophysiology, 52, 1106-1130.
  • Albright, T. D., Desimone, R., & Gross, C. G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque.Journal of Neurophysiology, 51, 16-31.
  • Anstis, S. (1998). Picturing peripheral acuity.Perception, 27, 817-825.
  • Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The oblique effect in man and animals.Psychological Bulletin, 78, 266-278.
  • Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex.Nature Neuroscience, 5, 1210-1216.
  • Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination.Science, 218, 697-698.
  • Banich, M. T., & Federmeier, K. D. (1999). Categorical and metric spatial processes distinguished by task demands and practice.Journal of Cognitive Neuroscience, 11, 153-166.
  • Battista, J., Kalloniatis, M., & Metha, A. (2005). Visual function: The problem with eccentricity.Clinical and Experimental Optometry, 88, 313-321.
  • Berkley, M. A., Kitterle, F., & Watkins, D. W. (1975). Grating visibility as a function of orientation and retinal eccentricity.Vision Research, 15, 239-244.
  • Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images.Journal of Physiology, 203, 237-260.
  • Blakemore, C., & Van Sluyters, R. C. (1975). Innate and environmental factors in the development of the kitten's visual cortex.Journal of Physiology, 248, 663-716.
  • Blanca, M. J., Zalabardo, C., Gari-Criado, F., & Siles, R. (1994). Hemispheric differences in global and local processing dependant on exposure duration.Neuropsychologia, 32, 1343-1351.
  • Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT.Annual Review of Neuroscience, 28, 157-189.
  • Boulinguez, P., Ferrois, M., & Graumer, G. (2003). Hemispheric asymmetry for trajectory perception.Cognitive Brain Research, 16, 219-225.
  • Breitmeyer, B. G. (1992). Parallel processing in human vision: History, review, and critique. In J. R. Brannan (Ed.),Applications of parallel processing in vision(pp. 37-86). Amsterdam: North-Holland.
  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance.Journal of Neuroscience, 12, 4745-4765.
  • Bruyer, R., Scailquin, J., & Coibion, P. (1997). Dissociation between categorical and coordinate spatial computations: Modulation by cerebral hemispheres, task properties, mode of response, and age.Brain and Cognition, 33, 245-277.
  • Campbell, F. W., & Kulikowski, J. J. (1966). Orientational selectivity of the human visual system.Journal of Physiology, 187, 437-445.
  • Campbell, F. W., Kulikowski, J. J., & Levinson, J. (1966). The effect of orientation on the visual resolution of gratings.Journal of Physiology, 187, 427-436.
  • Carrasco, M., Talgar, C. P., & Cameron, E. L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task, and set size.Spatial Vision, 15, 61-75.
  • Chambers, K. W., McBeath, M. K., Schiano, D. J., & Metz, E. G. (1999). Tops are more salient than bottoms.Perception and Psychophysics, 61, 625-635.
  • Champion, R. A., & Adams, W. J. (2007). Modification of the convexity prior but not the light-from-above prior in visual search with shaded objects.Journal of Vision, 7, 1-10.
  • Chapman, B., Gödecke, I., & Bonhoeffer, T. (1999). Development of orientation preference in the mammalian visual cortex.Journal of Neurobiology, 41, 18-24.
  • Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex.Journal of Neuroscience, 16, 6443-6453.
  • Christman, S., Kitterle, F. L., & Hellige, J. (1991). Hemispheric asymmetry in the processing of absolute versus relative spatial frequency.Brain and Cognition, 16, 62-73.
  • Cohen, G. (1982). Theoretical interpretation of lateral asymmetries. In J. G. Beaumont (Ed.),Divided visual field studies of cerebral organisation(pp. 29-55). London: Academic Press.
  • Coletta, N. J., Segu, P., & Tiana, C. L. M. (1993). An oblique effect in parafoveal motion perception.Vision Research, 33, 2747-2756.
  • Connolly, M., & Van Essen, D. (1984). The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey.Journal of Comparative Neurology, 226, 544-564.
  • Coppola, D. M., & White, L. E. (2004). Visual experience promotes the isotropic representation of orientation preference.Visual Neuroscience, 21, 39-51.
  • Coppola, D. M., White, L. E., Fitzpatrick, D., & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex.Proceedings of the National Academy of Sciences, USA, 95, 2621-2623.
  • Corballis, P. M. (2003). Visuospatial processing and the right-hemisphere interpreter.Brain and Cognition, 53, 171-176.
  • Corballis, P. M., Funnell, M. G., & Gazzaniga, M. S. (2002). Hemispheric asymmetries for simple visual judgments in the split brain.Neuropsychologia, 40, 401-410.
  • Corbetta, M., Miezin, F. M., Shulman, G. L., & Peterson, S. E. (1993). A PET study of visuospatial attention.Journal of Neuroscence, 13, 1202-1226.
  • Corwin, T. R., Moskowitz-Cook, A., & Green, M. A. (1977). The oblique effect in a vernier acuity situation.Perception and Psychophysics, 21, 445-449.
  • Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex.Science, 279, 566-570.
  • Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography.Journal of Comparative Neurology, 292, 497-523.
  • Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E., & Kalina, R. E. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry.Science, 236, 579-582.
  • Czigler, I., Balazs, L., & Pato, L. G. (2004). Visual change detection: Event-related potentials are dependent on stimulus location in humans.Neuroscience Letters, 364, 149-153.
  • Danckert, J., & Goodale, M. A. (2001). Superior performance for visually guided pointing in the lower visual field.Experimental Brain Research, 137, 303-308.
  • DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional microorganization of primary visual cortex: Receptive field analysis of nearby neurons.Journal of Neuroscience, 19, 4046-4064.
  • Delis, D. C., Robertson, L. C., & Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli.Neuropsychologia, 24, 205-214.
  • DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex.Vision Research, 22, 545-559.
  • DeValois, R. L., & DeValois, K. K. (1988).Spatial vision.NY: Oxford University Press.
  • DeValois, R. L., Yund, E. W., & Hepler, N. (1982). The orientation and direction selectivity of cells in macaque visual cortex.Vision Research, 22, 531-544.
  • Diogo, A. C., Soares, J. G., Koulakov, A., Albright, T. D., & Gattass, R. (2003). Electrophysiological imaging of functional architecture in the cortical middle temporal visual area of cebus apella monkey.Journal of Neuroscience, 23, 3881-3898.
  • Duncan, R. O., & Boynton, G. M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds.Neuron, 38, 659-671.
  • Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in depth: A centripetal bias.Perception, 22, 1013-1023.
  • Eimer, M. (2000). Attentional modulations of event-related brain potentials sensitive to faces.Cognitive Neuropsychology, 17, 103-116.
  • Ettlinger, G. (1990). "Object vision" and "spatial vision": The neuropsychological evidence for the distinction.Cortex, 26, 319-341.
  • Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S. J., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees?Nature, 382, 626-628.
  • Fioretto, M., Gandolfo, E., Orione, C., Fatone, M., Rela, S., & Sannita, W. G. (1995). Automatic perimetry and visual P300: Differences between upper and lower visual fields stimulation in healthy subjects.Journal of Medical Engineering and Technology, 19, 80-83.
  • Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey.Journal of Physiology, 365, 331-363.
  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex.Cerebral Cortex, 16, 1631-1644.
  • Furmanski, C. S., & Engel, S. A. (2000). An oblique effect in human primary visual cortex.Nature Neuroscience, 3, 535-536.
  • Gegenfurtner, K. R., Kiper, D. C., & Levitt, J. B. (1997). Functional properties of neurons in macaque area V3.Journal of Neurophysiology, 77, 1906-1923.
  • Gerardin, P., de Montalembert, M., & Mamassian, P. (2007). Shape from shading: New perspectives from the Polo Mint stimulus.Journal of Vision, 7, 1-11.
  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action.Trends in Neurosciences, 15, 20-25.
  • Grabowska, A., & Nowicka, A. (1996). Visual-spatial-frequency model of cerebral asymmetry: A critical survey of behavioral and electrophysiological studies.Psychological Bulletin, 120, 434-449.
  • Gregory, R. L. (1997).Eye and brain(5th ed.). Oxford: Oxford University Press.
  • Gros, B. L., Blake, R., & Hiris, E. (1998). Anisotropies in visual motion perception: A fresh look.Journal of the Optical Society of America A, 15, 2003-2011.
  • Gur, M., Kagan, I., & Snodderly, D. M. (2005). Orientation and direction selectivity of neurons in V1 of alert monkeys: Functional relationships and laminar distributions.Cerebral Cortex, 15, 1207-1221.
  • Han, S., Liu, W., Yund, E. W., & Woods, D. L. (2000). Interactions between spatial attention and global/local feature selection: An ERP study.Neuroreport, 11, 2753-2758.
  • Han, S., Weaver, J. A., Murray, S. O., Kang, X., Yund, E. W., & Woods, D. L. (2002). Hemispheric asymmetry in global/local processing: Effects of stimulus position and spatial frequency.Neuroimage, 17, 1290-1299.
  • Hansen, T., Pracejus, L., & Gegenfurtner, K. R. (2009). Color perception in the intermediate periphery of the visual field.Journal of Vision, 9, 1-12.
  • He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness.Nature, 383, 334-337.
  • He, S., Cavanagh, P., & Intriligator, J. (1997). Attentional resolution.Trends in Cognitive Sciences, 1, 115-121.
  • Heeley, D. W., & Buchanan-Smith, H. M. (1992). Directional acuity for drifting plaids.Vision Research, 32, 97-104.
  • Heilman, K. M., & Van Den Abell, T. (1979). Right hemisphere dominance for mediating cerebral activation.Neuropsychologia, 17, 315-321.
  • Heinze, H. J., Johannes, S., Münte, T. F., & Magun, G. R. (1994). The order of global- and local-level information processing: Electrophysiological evidence for parallel perception processes. In H. Heinze, T. Muente, & G. R. Mangun (Eds.),Cognitive electrophysiology(pp. 1-25). Boston: Birkhaeuser.
  • Hellige, J. B., & Michimata, C. (1989). Categorization versus distance: Hemispheric differences for processing spatial information.Memory and Cognition, 17, 770-776.
  • Henriksson, L., Nurminen, L., Hyvärinen, A., & Vanni, S. (2008). Spatial frequency tuning in human retinotopic visual areas.Journal of Vision, 8, 1-13.
  • Hickok, G., Kirk, K., & Bellugi, U. (1998). Hemispheric organization of local-and global-level visuospatial processes in deaf signers and its relation to sign language aphasia.Brain and Language, 65, 276-286.
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex.Journal of Physiology, 195, 215-243.
  • Hubel, D. H., & Wiesel, T. N. (1974a). Sequence regularity and geometry of orientation columns in the monkey striate cortex.Journal of Comparative Neurology, 158, 267-294.
  • Hubel, D. H., & Wiesel, T. N. (1974b). Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor.Journal of Comparative Neurology, 158, 295-305.
  • Hübner, R. (1997). The effect of spatial frequency on global precedence and hemispheric differences.Perception and Psychophysics, 59, 187-201.
  • Hübner, R. (1998). Hemispheric differences in global/local processing revealed by same-different judgements.Visual Cognition, 5, 457-478.
  • Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention.Cognitive Psychology, 43, 171-216.
  • Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex.Journal of Neuroscience, 20, 8504-8514.
  • Ivry, R. B., & Robertson, L. C. (1998).The two sides of perception.Cambridge, MA: MIT Press.
  • Jeffreys, D. A., Tukmachi, E. S., & Rockley, G. (1992). Evoked potential evidence for human brain mechanisms that respond to single, fixated faces.Experimental Brain Research, 91, 351-362.
  • Karim, A. K. M. R., & Kojima, H. (2010). Configurational asymmetry in vernier offset detection.Advances in Cognitive Psychology, 6, 66-78.
  • Karim, A. K. M. R., & Kojima, H. (in press). Perceptual asymmetry in vernier offset discrimination: A similar trend between the cardinal and oblique orientations.The Japanese Journal of Psychonomic Science.
  • Kennedy, H., & Orban, G. A. (1979). Preferences for horizontal or vertical orientation in cat visual cortical neurons [proceedings].Journal of Physiology, 296, 61P-62P.
  • Kimchi, R., & Merhav, I. (1991). Hemispheric processing of global form, local form, and texture.Acta Psychologica, 76, 133-147.
  • Kinsbourne, M. (1970). The cerebral basis of lateral asymmetries in attention.Acta Psychologica, 33, 193-201.
  • Kitterle, F. L., Hellige, J. B., & Christman, S. (1992). Visual hemispheric asymmetries depend on which spatial frequencies are task relevant.Brain and Cognition, 20, 308-314.
  • Kitterle, F. L., & Selig, L. M. (1991). Visual field effects in the discrimination of sine-wave gratings.Perception and Psychophysics, 50, 15-18.
  • Kobatake, E., Wang, G., & Tanaka, K. (1998). Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys.Journal of Neurophysiology, 80, 324-330.
  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: A computational approach.Psychological Review, 94, 148-175.
  • Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations.Journal of Experimental Psychology: Human Perception and Performance, 15, 723-735.
  • Kremláček, J., Kuba, M., Chlubnová, J., & Kubová, Z. (2004). Effect of stimulus localisation on motion-onset VEP.Vision Research, 44, 2989-3000.
  • Laeng, B., & Peters, M. (1995). Cerebral lateralization for the processing of spatial coordinates and categories in left- and right-handers.Neuropsychologia, 33, 421-439.
  • Lakha, L., & Humphreys, G. (2005). Lower visual field advantage for motion segmentation during high competition for selection.Spatial Vision, 18, 447-460.
  • Lamb, M. R., Robertson, L. C., & Knight, R. T. (1989). Effects of right and left temporal parietal lesions on the processing of global and local patterns in a selective attention task.Neuropsychologia, 27, 471-483.
  • Langer, M. S., & Bülthoff, H. H. (2001). A prior for global convexity in local shape-from-shading.Perception, 30, 403-410.
  • Lehmann, D., & Skrandies, W. (1979). Multichannel evoked potential fields show different properties of human upper and lower hemiretina systems.Experimental Brain Research, 35, 151-159.
  • Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields.Vision Research, 45, 2820-2830.
  • Li, Y., Fitzpatrick, D., & White, L. E. (2006). The development of direction selectivity in ferret visual cortex requires early visual experience.Nature Neuroscience, 9, 676-681.
  • Li, Y., Hooser, S. D. V., Mazurek, M., White, L. E., & Fitzpatrick, D. (2008). Experience with moving visual stimuli drives the early development of cortical direction selectivity.Nature, 456, 952-956.
  • Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: A neural basis in the visual cortex.Journal of Neurophysiology, 90, 204-217.
  • Liu, T., Heeger, D. J., & Carrasco, M. (2006). Neural correlates of the visual vertical meridian asymmetry.Journal of Vision, 6, 1294-1306.
  • Loffler, G., & Orbach, H. S. (2001). Anisotropy in judging the absolute direction of motion.Vision Research, 41, 3677-3692.
  • Maffei, L., & Fiorentini, A. (1977). Spatial frequency rows in the striate visual cortex.Vision Research, 17, 257-264.
  • Malonek, D., Tootell, R. B. H., & Grinvald, A. (1994). Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT.Proceedings: Biological Sciences, 258, 109-119.
  • Mamassian, P., & Goutcher, R. (2001). Prior knowledge on the illumination position.Cognition, 81, B1-B9.
  • Mamassian, P., Jentzsch, I., Bacon, B. A., & Schweinberger, S. R. (2003). Neural correlates of shape from shading.NeuroReport, 14, 971-975.
  • Mansfield, R. J. W. (1974). Neural basis of orientation perception in primate vision.Science, 186, 1133-1135.
  • Martinez, A., Moses, P., Frank, L., Buxton, R., Wong, E., & Stiles, J. (1997). Hemispheric asymmetries in global and local processing: Evidence from fMRI.NeuroReport, 8, 1685-1689.
  • Matthews, N., & Qian, N. (1999). Axis-of-motion affects direction discrimination, not speed discrimination.Vision Research, 39, 2205-2211.
  • Mattingley, J. B., Bradshaw, J. L., Nettleton, N. C., & Bradshaw, J. A. (1994). Can task specific perceptual bias be distinguished from unilateral neglect?Neuropsychologia, 32, 805-817.
  • Maunsell, J. H., & Van Essen, D. C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries.Journal of Comparative Neurology, 266, 535-555.
  • McAnany, J. J., & Levine, M. W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies.Vision Research, 47, 2327-2336.
  • Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2001). Neuronal representations of stimulus associations develop in the temporal lobe during learning.Proceedings of the National Academy of Science, USA, 98, 12239-12244.
  • Messinger, A., Squire, L. R., Zola, S. M., & Albright, T. D. (2005). Neural correlates of knowledge: Stable representation of stimulus associations across variations in behavioral performance.Neuron, 48, 359-371.
  • Metzger, W. (1936).Gesetze des Sehens[Laws of vision]. Frankfurt am Main: Waldemar Kramer.
  • Michimata, C. (1997). Hemispheric processing of categorical and coordinate spatial relations in vision and visual imagery.Brain and Cognition, 33, 370-387.
  • Mitchell, D. E., Freeman, R. D., & Westheimer, G. (1967). Effect of orientation on the modulation sensitivity for interference fringes on the retina.Journal of the Optical Society of America, 57, 246-249.
  • Mullen, K. T. (1991). Colour vision as a post-receptoral specialization of the central visual field.Vision Research, 31, 119-130.
  • Mullen, K. T., & Kingdom, F. A. (1996). Losses in peripheral colour sensitivity predicted from "hit and miss" post-receptoral cone connections.Vision Research, 36, 1995-2000.
  • Mustillo, P., Francis, E., Oross, S., Fox, R., & Orban, G. A. (1988). Anistropies in global stereoscopic orientation discrimination.Vision Research, 28, 1315-1321.
  • Nelson, J. I., Kato, H., & Bishop, P. O. (1977). Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex.Journal of Neurophysiology, 40, 260-283.
  • Newton, J. R., & Eskew, R. T. Jr. (2003). Chromatic detection and discrimination in the periphery: A postreceptoral loss of color sensitivity.Visual Neuroscience, 20, 511-521.
  • Niebauer, C. L. (2001). A possible connection between categorical and coordinate spatial relation representations.Brain and Cognition, 47, 434-445.
  • Okubo, M., & Michimata, C. (2002). Hemispheric processing of categorical and coordinate spatial relations in the absence of low spatial frequencies.Journal of Cognitive Neuroscience, 14, 291-297.
  • Okubo, M., & Nicholls, M. E. R. (2008). Hemispheric asymmetries for temporal information processing: Transient detection versus sustained monitoring.Brain and Cognition, 66, 168-175.
  • Orban, G. A., & Kennedy, H. (1981). The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat.Brain Research, 208, 203-208.
  • Pasternak, T., Schumer, R. A., Gizzi, M. S., & Movshon, J. A. (1985). Abolition of visual cortical direction selectivity affects visual behavior in cats.Experimental Brain Research, 61, 214-217.
  • Perry, V. H., & Cowey, A. (1985). The ganglion cell and cone distribution in the monkey retina: Implications for central magnification factors.Vision Research, 25, 1795-1810.
  • Peyrin, C., Baciu, M., Segebarth, C., & Marendaz, C. (2004). Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.NeuroImage, 23, 698-707.
  • Peyrin, C., Chauvin, A., Chokron, S., & Marendaz, C. (2003). Hemispheric specialization for spatial frequency processing in the analysis of natural scenes.Brain and Cognition, 53, 278-282.
  • Peyrin, C., Chokron, S., Guyader, N., Gout, O., Moret, J., & Marendaz, C. (2006). Neural correlates of spatial frequency processing: A neuropsychological approach.Brain Research, 1073-1074, 1-10.
  • Peyrin, C., Schwartz, S., Seghier, M., Michel, C., Landis, T., & Vuilleumier, P. (2005). Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes.NeuroImage, 28, 464-473.
  • Portin, K., Vanni, S., Virsu, V., & Hari, R. (1999). Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings.Experimental Brain Research, 124, 287-294.
  • Previc, F. H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications.Behavioral and Brain Sciences, 13, 519-575.
  • Previc, F. H. (1998). The neuropsychology of 3-Dspace.Psychological Bulletin, 124, 123-164.
  • Previc, F. H., & Blume, J. L. (1993). Visual search asymmetries in three-dimensional space.Vision Research, 33, 2697-2704.
  • Proverbio, A. M., Minniti, A., & Zani, A. (1998). Electrophysiological evidence of a perceptual precedence of global vs. local visual information.Cognitive Brain Research, 6, 321-334.
  • Qiu, A., Rosenau, B. J., Greenberg, A. S., Hurdal, M. K., Barta, P., Yantis, S., & Miller, M. I. (2006). Estimating linear cortical magnification in human primary visual cortex via dynamic programming.NeuroImage, 31, 125-138.
  • Rainer, G., Lee, H., & Logothetis, N. K. (2004). The effect of learning on the function of monkey extrastriate visual cortex.PLoS Biology, 2, E44.
  • Rainer, G., & Miller, E. K. (2000). Effects of visual experience on the representation of objects in the prefrontal cortex.Neuron, 27, 179-189.
  • Raymond, J. E. (1994). Directional anisotropy of motion sensitivity across the visual field.Vision Research, 34, 1029-1037.
  • Reid, R. C., Soodak, R. E., & Shapley, R. M. (1991). Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex.Journal of Neurophysiology, 66, 505-529.
  • Rezec, A. A., & Dobkins, K. R. (2004). Attentional weighting: A possible account of visual field asymmetries in visual search?Spatial Vision, 17, 269-293.
  • Rijsdijk, J. P., Kroon, J. N., & van der Wilt, G. J. (1980). Contrast sensitivity as a function of position on the retina.Vision Research, 20, 235-241.
  • Rolls, E. T. (1995). Learning mechanisms in the temporal lobe visual cortex.Behavioral Brain Research, 66, 177-185.
  • Rose, D., & Blakemore, C. (1974). An analysis of orientation selectivity in the cat's visual cortex.Experimental Brain Research, 20, 1-17.
  • Rosenthal, O., Fusi, S., & Hochstein, S. (2001). Forming classes by stimulus frequency: Behavior and theory.Proceedings of the National Academy of Science, USA, 98, 4265-4270.
  • Ross, H. E. (1997). On the possible relations between discriminability and apparent magnitude.British Journal of Mathematical and Statistical Psychology, 50, 187-203.
  • Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2004). How parallel is visual processing in the ventral pathway?Trends in Cognitive Sciences, 8, 363-370.
  • Rybash, J. M., & Hoyer, W. J. (1992). Hemispheric specialization for categorical and coordinate spatial representations: A reappraisal.Memory and Cognition, 20, 271-276.
  • Saarinen, J., & Levi, D. M. (1995). Orientation anisotropy in vernier acuity.Vision Research, 35, 2449-2461.
  • Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial frequency channels in human vision.Journal of the Optical Society of America, 61, 1176-1186.
  • Schatz, J., & Erlandson, F. B. (2003). Level-repetition effects in hie-rarchical stimulus processing: Timing and location of cortical activity.International Journal of Psychophysiology, 47, 255-269.
  • Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex.Nature Neuroscience, 2, 727-732.
  • Sergent, J. (1982). The cerebral balance of power: Confrontation or cooperation?Journal of Experimental Psychology: Human, Perception and Performance, 8, 253-272.
  • Sergent, J. (1991a). Judgments of relative position and distance on representations of spatial relations.Journal of Experimental Psychology: Human Perception and Performance, 91, 762-780.
  • Sergent, J. (1991b). Processing of spatial relations within and between the disconnected cerebral hemispheres.Brain, 114, 1025-1043.
  • Sjöstrand, J., Olsson, V., Popovic, Z., & Conradi, N. (1999). Quantitative estimations of foveal and extra-foveal retinal circuitry in humans.Vision Research, 39, 2987-2998.
  • Skrandies, W. (1987). The upper and lower visual field of man: Electrophysiological and functional differences. In D. Ottoson (Ed.),Progress in sensory physiology(pp. 1-93). Berlin: Springer.
  • Slotnick, S. D., & Moo, L. R. (2006). Prefrontal cortex hemispheric specialization for categorical and coordinate visual spatial memory.Neuropsychologia, 44, 1560-1568.
  • Sturm, W., Reul, J., & Willmes, K. (1989). Is there a generalised right hemisphere dominance for mediating cerebral activation? Evidence from a choice reaction experiment with lateralized simple warning stimuli.Neuropsychologia, 27, 747-751.
  • Sun, J., & Perona, P. (1998). Where is the sun?Nature Neuroscience, 1, 183-184.
  • Talgar, C. P., & Carrasco, M. (2002). Vertical meridian asymmetry in spatial resolution: Visual and attentional factors.Psychonomic Bulletin and Review, 9, 714-722.
  • Tolhurst, D. J., & Thompson, I. D. (1981). On the variety of spatial frequency selectivities shown by neurons in area 17 of the cat.Proceedings of the Royal Society of London. Series B: Biological Sciences, 213, 183-199.
  • Tolhurst, D. J., & Thompson, I. D. (1982). Organization of neurones preferring similar spatial frequencies in cat striate cortex.Experimental Brain Research, 48, 217-227.
  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. Mansfield (Eds.),Analysis of visual behavior(pp. 549-586). Cambridge, MA: MIT Press.
  • Van de Grind, W. A., Koenderink, J. J., Van Doorn, A. J., Milders, M. V., & Voerman, H. (1993). Inhomogeneity and anisotropies for motion detection in the monocular visual-field of human observers.Vision Research, 33, 1089-1107.
  • Van Essen, D. C., Newsome, W. T., & Maunsell, J. H. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability.Vision Research, 24, 429-448.
  • Versace, R., & Tiberghien, G. (1988). Sensitivity of cerebral hemispheres to the local and global components of verbal and no-verbal stimuli.Cahiers de Psychologie Cognitive, 8, 125-137.
  • Virsu, V., & Rovamo, J. (1979). Visual resolution, contrast sensitivity, and the cortical magnification factor.Experimental Brain Research, 37, 475-494.
  • Watson, A. B. (1982). Summation of grating patches indicates many types of detectors at one retinal location.Vision Research, 22, 17-25.
  • Watson, A. B., & Robson, J. G. (1981). Discrimination at threshold: Labelled detectors in human vision.Vision Research, 21, 1115-1122.
  • Westheimer, G., & Beard, B. L. (1998). Orientation dependency for foveal line stimuli: Detection and intensity discrimination, resolution, orientation discrimination, and vernier acuity.Vision Research, 38, 1097-1103.
  • Wiesel, T. N., & Hubel, D. H. (1974). Ordered arrangement of orientation columns in monkeys lacking visual experience.Journal of Comparative Neurology, 158, 307-318.
  • Wilkinson, D., & Donnelly, N. (1999). The role of stimulus factors in making categorical and coordinate spatial judgments.Brain and Cognition, 39, 171-185.
  • Xu, X., Collins, C. E., Khaytin, I., Kaas, J. H., & Casagrande, V. A. (2006). Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area.Proceedings of the National Academy of Sciences, USA, 103, 17490-17495.
  • Yovel, G., Yovel, I., & Levy, J. (2001). Hemispheric asymmetries for global and local visual perception: Effect of stimulus and task factors.Journal of Experimental Psychology: Human Perception and Performance, 27, 1369-1385.
  • Zegarra-Moran, O., & Geiger, G. (1993). Visual recognition in the peripheral field: Letters versus symbols and adults versus children.Perception, 22, 77-90.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.cejsh-article-doi-10-2478-v10053-008-0080-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.