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ABSTRACT 
____________________________________________________________________________________________________ 

Recent years have witnessed a progressive increase 

in the number of people suffering from 

hypertension, which is one of the most serious 

health problems in the world. Hypertension results 

in changes leading to function disorders, not only of 

the organs and tissues, but also changes leading to 

the activation of many defense mechanisms in the 

cells in order to prevent damage. One of them is the 

expression of neuroendocrine (NE) hormones and 

biologically active substances, which has been the 

focus of extensive research for a number of years. 

Active  

involvement of NE   cells   and  the   biological and 

therapeutic properties of various substances 

synthesized by them have been confirmed in 

clinical trials and in various experimental models. 

Results obtained in many research studies indicate 

intense activity of enteroendocrine cells in the 

gastrointestinal tract in various pathological 

conditions, including hypertension. In the present 

review, we discuss the morphological and 

functional changes of gastrointestinal 

neuroendocrine cells under conditions of different 

types of hypertension. 
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DIFFUSE NEUROENDOCRINE SYS-

TEM CELLS 

In the human body, neuroendocrine (NE) 

cells are isolated or dispersed in many organs and 

systems in small concentrations. These cells are 

usually present in the epithelial cells lining the main 

body surfaces, but may also be present in the 

connective tissue. Despite the fact that they are 

anatomically independent and do not form separate 

organs, the endocrine cells that are distributed 

throughout the body constitute a particular 

functional system with common biochemical, 

cytological, and secretory properties as well as 

identical control mechanisms [1- 6]. On the other 

hand, they display a large number of 

morphological-functional distinctions, which form 

the basis for their classification [1,5,7]. 

The first mention of cells called 

neuroendocrine cells emerged in the 19th century. 

The term "Diffuse Neuroendocrine System" 

(DNES) is currently used. Those DNES cells 

secreting serotonin or certain other amine 

derivatives demonstrate amine precursor uptake and 

decarboxylation and are often referred to 

acronymically as APUD cells, e.g. [8]. This is one 

of the most important homeostasis systems [2, 4, 9, 

10]. The system is a type of "link" between the 

nervous system and the hormonal system. 

Neuroendocrine crosstalk in the gut has been 

elaborated by Psichas et al. [11] and novel crosstalk 

in the intestinal immunoendocrine axis by 

Worthington [12]. 

The presence of DNES cells has been 

confirmed in many organs [11,13,14]. 

MORPHOLOGY OF NEUROENDO-

CRINE CELLS IN THE GASTRO-

INTESTINAL TRACT 

Neuroendocrine cells are located between 

the epithelial cells of the mucosa in the 

gastrointestinal tract. NE cells are morphologically 

different from other mucosal cells and exhibit a 

number of distinct neural phenotypic features, but 

function like endocrine cells [15]. EE cells in the GI 

tract are one of the fourth developmental cell 

lineages secreting over 30 different hormones [5]. 

At least 13 distinct gut NE cells exist, all of which 

may develop tumors oversecreting various 

bioactive peptides or amines [16]. 

Their number is estimated as 3x10
9
 [8]. 

Enteroendocrine cells have a variety of shapes [4, 5, 

17], in H+E staining - a dark nucleus is surrounded 

by a bright, weakly stained cytoplasm. In terms of 

morphology, they can be divided into two types: the 

open type, when the top surface of the cell contacts 

the lumen of the digestive tract (Fig. 1); and the 

closed type, where the cells lie on the basal 

membrane but the top of the cell does not reach the 

gastrointestinal lumen (Fig. 2).  

Figure 1. Neuroendocrine open-type cell with free surface microvilli and secretory granules in the cytoplasm. 

Magnification x4400 [Image is the property of Professor Irena Kasacka] 
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Figure 2. Neuroendocrine stomach cells of hypertensive rat. In the cytoplasm, numerous secreted grains, most of 

which are filled with high density electrons. Magnification x4400 [Image is the property of Professor Irena 

Kasacka] 

Very well developed microvillus and 

single pinocytic vesicles are often observed on the 

top surface of open cells. Since closed cells do not 

directly communicate with the gastrointestinal 

lumen, their function is probably not stimulated 

physicochemically by gastric or intestinal content, 

but their secretion is regulated by mediators from 

nerve endings or blood vessels [1]. Some 

enteroendocrine cells have long cytoplasmic 

protrusions thanks to which the secreted substances 

may be delivered directly to distant effector cells or 

blood vessels [18]. Effector cells can be other 

neuroendocrine cells, resulting in an extensive 

network of interconnected functional relationships 

[5, 18]. In electron microscopy, neuronal granules 

are stored in the cytoplasm of enteroendocrine cells, 

where biogenic amines and peptide hormones are 

stored (Fig.1, 2). Accurate identification and 

classification of enteroendocrine cells became 

possible only after the introduction of 

immunohistochemical staining methods [19], which 

enabled the detection of biogenic amines and 

peptide hormones, not only in granular secretions 

but also in nongranular form [5] in the cytoplasm of 

enteroendocrine cells (Fig. 3). 

Figure 3. Microphotography of the gastric mucosa. Immunohistochemical staining of somatostatin in 

enteroendocrine cells. Magnification x200 [Image is the property of Professor Irena Kasacka] 
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HORMONES OF THE GASTROINTE-

STINAL TRACT AND SECRETION 

CELLS 

A great number of hormones secreted by 

different types of enteroendocrine cells present in 

the epithelium lining the gastrointestinal tract are 

now known. Their numbers have increased over the 

last few years (from 2011 to present) approximately 

over three fold [5, 20]. Intestinal enteroendocrine 

cells co-express six functionally related peptides 

[21].  

These substances regulate not only the 

functions of the digestive system, but also 

contribute to maintaining the body's homeostasis. 

Neuroendocrine cells have been identified in each 

part of the gastrointestinal tract, starting with the 

mouth (e.g. taste bud cells) [22] to the large 

intestine and rectum. 

The best known gastric peptide hormone is gastrin, 

which is secreted by G cells in the stomach and 

duodenum. Gastrin release occurs when food enters 

the stomach. Therefore, it is the main stimulant of 

gastric acid secretion. Its paracrine action leads to 

the release of histamine in the stomach [23]. 

Gastrin can affect the colon, pancreas, small 

intestine, liver, or the oesophagus. Gastrin as well 

as pure-ghrelin and histamine (ECL) cells are 

gastro-endocrine restricted [21]. In the human 

antral gastric mucosa, apart from the well-known 

endocrine cell secreting gastrin (G), somatostatin 

(D) and serotonin (EC), an unknown secretory

product of D(1) cells and P cells has also been

identified [18]. Ten years later, it appeared that

P/D1 cells release ghrelin, which is  distributed

from the stomach to the colon (Table 1) [7]. Ghrelin

is also secreted by A cells in the stomach (Table 1)

[22].

However, its effects are not limited to the

gastrointestinal tract, as it also affects the kidneys,

ovaries, and the brain [24]. This hormone is an

important regulator of sodium management, which

has a direct impact on blood pressure regulation

[25].

One of the first identified gastrointestinal 

hormones was secretin, secreted by S cells, whose 

secretion occurs both into the blood vessels and into 

the digestive tract. The primary function of secretin 

is the stimulation of bicarbonate secretion by the 

pancreas. Additionally, it affects motor activity, 

absorption, blood supply and metabolism, and 

intestinal secretion. The stomach relaxes the 

motility and secretion of hydrochloric acid, 

stimulates the synthesis of pepsin, and regulates the 

secretion of gastrin. Furthermore, secretin 

accelerates the heart rate, which may have a direct 

impact on blood pressure [8, 26]. 

Somatostatin is produced by D cells 

located in the stomach, the small and large 

intestine, and also the pancreas [27]. This hormone 

is an inhibitor of insulin, glucagon, and pancreatic 

juice production. Its action in terms of secretory 

cells of the gastrointestinal tract is similar [8]. 

Somatostatin and 5-HT are pan-GI tract 

enteroendocrine cell types [21]. In addition, 

somatostatin decreases saliva and bile secretion, 

inhibits gastric motility, reduces visceral blood 

flow, and increases and regenerates gastrointestinal 

cells [27]. 

D1 cells produce a vasoactive intestinal peptide 

(VIP) that inhibits acid secretion in the stomach and 

stimulates the endocrine pancreas. VIP also has a 

vasodilatory effect, thus leading to hypotension [8, 

28]. VIP is secreted both by neuronal and immune 

cells, however the VIP-mediated action varies 

according to the target organ depending on the 

presence of a specific associated receptor, the 

involved immune cells, and the microenvironment 

of the organ [29]. 

Atrial Natriuretic Peptide (ANP), mainly 

secreted by atrial cardiomyocytes, participates in 

cardiovascular regulation, sodium resorption and 

additionally modulates gastric peristalsis and 

regulates gastric acid secretion by affecting the 

release of somatostatin and gastrin [30, 31]. 

Glucose-dependent insulinotropic peptide 

(GIP) secreted by K cells of the small intestinal 

mucosa, inhibits the secretion of gastrin, gastric 

acid, gastric and intestinal peristalsis, and 

stimulates insulin secretion [32, 33]. 

The glucose-like peptide (GLP-1) 

produced by the L cells of the large intestine and 

the final section  of the small intestine inhibits 

exocrine pancreatic function, reduces the rate of 

gastric emptying, and further inhibits 

glycogenolysis in the liver. In experimental models, 

the administration of this neuropeptide increases 

pulse and blood pressure, reduces cardiomyocyte 

apoptosis, and improves heart function [34]. 

Cocaine- and amphetamine-regulated 

transcript (CARTs) peptides are recently described 

neuropeptides which impact, predominantly, on the 

body's energy metabolism [35]. The literature 

indicates the effect of CARTs on the hypothalamic-

pituitary-adrenal axis, which plays an important 

role in the regulation of many processes occurring 

in the body, including blood pressure regulation 

[36]. A relatively numerous population of CART-

positive neurons has been observed in the mucosal 

plexus of the stomach, and a co-localization of 

CART and VIP peptides has been observed in all 

segments of the digestive tract of various 

mammalian species [20]. 

Ghrelin is secreted by the parietal cells of 

the fundus and body of the stomach and is also 

produced in smaller quantities in the intestines, 

pancreas, kidneys, pituitary gland, and arcuate 

nucleus of the hypothalamus [37]. This hormone is 
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responsible for controlling the energy balance of 

the body. It stimulates appetite, increases 

hydrochloric acid secretion, enhances gastrin 

secretion, regulates gastrointestinal motility, and 

protects the gastric mucosa. Its effect is not limited 

to the gastrointestinal tract, it affects the gonads, 

insulin secretion, the cardiovascular system (inter 

alia, by suppressing cardiomyocytes and vascular 

endothelial cells) [38]. Ghrelin decreases arterial 

pressure and increases the cardiac index [2]. 

However, gastric ghrelin cells differ significantly 

from intestinal ghrelin-motilin cells [21]. 

REGULATION OF BLOOD PRE-

SSURE 

Arterial pressure is the result of 

cardiovascular system regulation, the diameter of 

blood vessels, and the composition and volume of 

extracellular fluid. Disorders of any of the systems 

are compensated for by the reflex action of the 

regulatory systems, stabilizing arterial pressure and 

determining blood pressure levels. Maintaining 

normal, constant blood pressure is aimed at 

maintaining proper blood flow in all organs of the 

body, especially the brain. Lowering or increasing 

mean BP beyond the scope of autoregulation 

constitutes a direct risk to life. Maintaining specific 

blood pressure through baroreceptor reflexes, 

arterial chemoreceptors, cardio-pulmonary 

mechanoreceptors, and venous reflexes occurs only 

while the stimulus is active and is called 'short-term 

regulation.' Its principle is to maintain constant 

blood pressure at the expense of a change in blood 

flow in major vascular systems (e.g. the digestive 

tract) as a result of neurogenic and humoral action 

[39]. 

Constant blood pressure is determined by 

long-term mechanisms, which act with a 

considerable delay. These mechanisms maintain a 

constant volume of extracellular fluid and 

consequently a constant volume of circulating 

blood. Cardiac capacity is the sum of organ flow, 

adjusted to the energy requirement and responsible 

for maintaining a constant oxygen level at the 

cellular level of a tissue or organ. The autonomic 

nervous system and the endocrine system 

participate in this regulatory mechanism. The 

effectiveness of regulating blood pressure depends 

on the functional dominance of autoregulation and 

vasoactive hormones over local factors that 

determine the adaptation of the flow to the current 

metabolic status of an organ or tissue [40, 41]. 

ETIOLOGY OF HYPERTENSION 

Hypertension is a chronic disease 

characterized by persistent or periodically elevated 

blood pressure above the upper reference value. 

Approximately 40% of the global population 

suffers from hypertension [42]. Hypertension is one 

of the most serious lifestyle diseases of the 21
st
 

century, frequently being a multifactorial 

impairment in the interaction between 

environmental and genetic components [43]. 

Hypertension leads to the dysfunction of many 

organs, cardiovascular disease, or renal disease [25, 

44]. 

The etiology of hypertension is multifaceted. 

Despite considerable progress in research on 

hypertension, in almost 90% of the cases its cause 

remains undetermined. Such hypertension is called 

primary hypertension (idiopathic) [30]. The 

remaining 10% of hypertension cases are classified 

as secondary hypertension and are more likely to be 

complications or illnesses associated with other 

conditions (e.g. obesity, diabetes, heart disease) or 

vascular malformations [30, 40]. 

SYSTEMIC AND LOCAL DISOR-

DERS AND NEUROENDOCRINE 

CELLS OF THE GASTROINTE-

STINAL TRACT 

The function of neuroendocrine cells is 

regulated by a number of factors. Secretion of 

substances produced by these cells remains under 

the control of the autonomic nervous system. It is 

also conditioned by calcium ion concentration and 

is regulated by interactions between cells. As 

demonstrated in a number of  studies, any local 

lesions (e.g. inflammation or ulceration) and 

systemic conditions (e.g. hypertension) cause 

disorders of enteroendocrine cell function, reflected 

in changes in the number, morphology, location, 

and activity of these cells in the gastrointestinal 

tract. This illustrates the important role played by 

these cells in maintaining whole body homeostasis 

[45,46,47]. 

The earliest changes in hypertensive 

disease are changes in the structure and function of 

the myocardium and blood vessel walls, which 

results in a dysfunction of the whole body. In 

addition to the variety of organ complications 

associated with hypertension, gastrointestinal 

bleeding, intestinal ischemia associated with 

vasoconstriction, ulceration and intestinal fibrosis, 

or acute pancreatitis may occur. Organ changes are 

particularly dangerous since they are the most 

common causes of death [48-52]. 

ENTEROENDOCRINE   CELLS   OF 

THE GASTROINTESTINAL TRACT 

IN ARTERIAL  HYPERTENSION 
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In a number of experimental models [28, 

30] and humans [25], changes in the position and

the number of neuroendocrine cells in the

gastrointestinal tract have been observed in the

course of hypertension, despite an absence of

significant changes in the histological structure of

particular organs. Since some of the substances

produced by neuroendocrine cells can affect blood

vessel wall tension or heart function, they

presumably play an important role in regulating

blood pressure.

Research conducted on rats with 

experimental renal vascular hypertension 

demonstrated that the number of G, D, D1, and 

synaptophysin cells was elevated in comparison 

with control animals. The increase in the number of 

gastric secretion cells is likely to counteract the 

increased expression of secretory and gastric 

motility factors that accompany hypertension. The 

increased immunoreactivity of synaptophysin in the 

hypertonic stomach of the animals is presumably 

indicative of the intensification of intracellular 

transport of secreted grains in enteroendocrine cells 

[28]. The same experiment also demonstrated an 

increase in the number and immunoreactivity of 

VIP-containing cells in the pylorus of hypertensive 

rats [28]. These changes may be due to the 

inhibition of angiotensin converting enzyme (ACE) 

activity, leading to a decrease in the activity of the 

RAA [28].  

In the gastrointestinal tract of animals with 

renal arterial hypertension, the number of cells 

containing atrial natriuretic peptide [30] was lower. 

An increase in ANP levels In the sera of these 

animals, which resulted in a decrease in blood 

pressure and normalization of heart activity, was 

observed [53]. The authors suggest that this may be 

the reason for a reduction in the immunoreactivity 

of ANP-producing cells in hypertensive animals. 

Our own studies demonstrated an increase 

in the number of CART-containing cells throughout 

the GI tract in rats with renal arterial hypertension 

[35]. The mechanism of action of this peptide in 

hypertension has not been fully explained yet. It is 

assumed that by inhibiting pro-inflammatory 

factors CARTs participate in the body’s adaptive 

process in hypertension, which is considered 

chronic inflammation [18].  

Changes in enteroendocrine cell activity 

have also been observed in the course of intrinsic 

hypertension. Kasacka et al. [45] demonstrated a 

significant increase in the number of gastric, 

serotonin and somatostatin-producing cells in 

spontaneously hypertensive rats (SHR). The 

simultaneous increase in the number of gastrin-

producing and somatostatin-producing cells present 

in the gastric mucosa of SHR may be due to the 

mutual functional relationships between these cells. 

A significant increase in the number of serotonin-

producing cells is probably related to the paracrine 

effect of D cells which stimulate EC cells to 

produce serotonin. The authors of these studies 

suggested that a marked increase in 

immunoreactivity and the number of 

enteroendocrine cells in the stomach of SHR may 

be a compensatory phenomenon that alleviates, to a 

certain degree, homeostasis disorders caused by 

hypertension. 

It was shown that the activity of 

neuroendocrine cells producing ghrelin was 

changed in hypertension [54,55].  

Hamanda et al. [56] demonstrated 

increased immunoreactivity of ghrelin-containing 

cells in SHR compared with control Wistar Kyoto 

(WKY) animals. 

A significantly higher number of 

immunopositive cells has also been reported in the 

stomach and duodenum of renal vascular 

hypertension [57].  

This hormone has an antihypertensive 

effect, and the increase in the number of 

immunoreactive cells may be an adaptive response 

to homeostatic changes in the function and 

morphology of many organs in the course of 

hypertension, as suggested by Janiuk et al. [58]. 

The results of numerous studies have 

shown that ghrelin, by increasing the volume of 

excreted urine, can lower blood pressure, which 

may form the basis of a compensatory mechanism 

in hypertension. Research conducted on salt-

induced hypertensive rats by Aoki et al. [59] 

demonstrated that ghrelin had antihypertensive 

effects in hypertensive animals. The effect of 

ghrelin on blood pressure has also been confirmed 

in humans [60]. 

In patients with hypertension, a 

postprandial increase in gastrin and a decrease in 

blood pressure have been observed [25]. One of the 

mechanisms responsible for regulating blood 

pressure is maintaining appropriate sodium levels 

and decomposing it in extracellular spaces [61]. 

Hypertension develops through prolonged 

accumulation of sodium, and compensatory 

mechanisms are unable to correct these disorders 

[62]. This is a mechanism frequently found in 

overweight or obese patients. It is believed that 

gastrin may impact renal receptors, resulting in 

excess sodium excretion, thus contributing to the 

maintenance of normal blood pressure [25, 61].  

Our understanding of the biology and 

genetics of the intestinal endocrine lineage cells in 

normal and pathological states as well as novel 

immune mechanism in hypertension and 

cardiovascular risk improve available therapies 

considerably [4,16,57,63]. The present review 

contributes to the understanding of this topic. 
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CONCLUSION 

We highlight that gut NE cells possess 

plastic morpho-biochemical properties in 

pathological conditions, similar to many other cells, 

including neurons. Morphologically, NE cells 

manifest their plasticity both in cytological and 

anatomical levels (cell parameters, their number, 

and distribution). The modified secretion process 

has been improved not only at the 

immunohistochemical level but also at the level of 

gene expressions showed by many other studies. 

From several NE cell types that have been studied, 

cells secreting SOM were distinct in their property 

of reaction to pathological conditions in various 

types of HT. The morpho-functional properties of 

NE cells depend on the cell type, as well as on 

pathological conditions such HT type , its duration, 

and the age of the animals. 
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