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ABSTRACT  

_________________________________________________________________________________ 

 
Nowadays, civilization diseases, such as 

hypertension, are one of the biggest global health 

problems. In 2017 the threshold for hypertension 

diagnosis was set at 130/80 mmHg, which resulted 

in its increased prevalence, reaching nearly 50% of 

the human population. Therefore, strategies for 

hypertension prevention and treatment have been 

recently extensively developing. Nonetheless, 

growing body of factors which can affect blood 

pressure and induce hypertension is constantly 

prompting researchers to conduct experiments in 

this field. For this purpose, animal models seem to 

be appropriate and necessary. The present report 

reviews current findings related to hypertension 

types and causes. It also presents the main 

guidelines for high blood pressure prevention and 

describes different experimental models introduced 

to be carried out in such studies. 
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INTRODUCTION 
 

 Hypertension is one of the risk factors for 

the development of cardiovascular diseases, which 

are responsible for more than 50% of the deaths 

globally [1]. The year 2017 brought changes in the 

scope of recommended threshold for hypertension 

diagnosis (Table 1). According to the latest 

American College of Cardiology (ACC) and 

American Heart Association (AHA) guidelines, 

high blood pressure should be treated at 130/80 

mmHg rather than 140/90 mmHg [2]. Thereby, 

hypertension prevalence reaches half of the human 

population worldwide [2]. Therefore, it is not 

surprising that many of the recent experimental 

approaches are concentrated around this issue. 

 

 

Table 1. New classification of blood pressure categories and hypertension stages recommended by the American 

College of Cardiology (ACC) and American Heart Association (AHA). SBP – systolic blood pressure, DBP – 

diastolic blood pressure 

 

Blood Pressure Categories 

Normal Elevated 
Hypertension 

Stage I Stage II 

SBP 

(mm Hg) 
< 120 120-129 130-139 ≥ 140 

DBP 

(mm Hg) 
< 80 < 80 80-89 ≥ 90 

 

CAUSES OF HYPERTENSION 

 
 I. Genetic predisposition 

 

 It is well known that many genes or gene 

variants may affect blood pressure (BP) [3]. To 

date, there are only several described single-gene 

mutations (e.g. in glucocorticoid-remediable 

aldosteronism, Gordon`s or Liddle syndromes), 

which contribute to the development of 

hypertension [4]. However, these disorders are 

rarely observed. Usually, hypertension results from 

complex, polygenetic mutations as well as multiple 

single-nucleotide polymorphisms (SNPs) [3].  

 Genetic predisposition to elevation of BP 

is especially pronounced in primary hypertension, 

in which chronically increased BP has no 

identifiable cause. On the basis of studies carried 

out on twins, it has been proven that the heredity of 

hypertension reaches approximately 30-60% [5]. 

Moreover, family history of the hypertensive 

individuals also confirms relevant role of the 

genetic background in the etiology of hypertension 

[6]. 

 

II. Secondary hypertension 

 

 In contrast to the genetic basis of increased 

BP, secondary hypertension is caused by 

identifiable factors, which can explain occurrence 

of the elevated BP. However, this hypertension type 

affects only 10% of the adult patients [7]. 

Nevertheless, correct diagnosis and treatment may 

effectively decrease BP and prevent further organ 

damage. 

 

1.Lifestyle factors 

 

 Environmental factors as well as an 

unhealthy lifestyle are often indicated as the major 

causes of hypertension. Interestingly, appropriate 

and balanced diet might play a crucial role in 

maintaining physiological BP values. Experimental 

researches have shown that among all dietary 

components, sodium and potassium consumption 

has the most pronounced influence on BP value [8-

10]. It was demonstrated that excessive sodium 

intake positively correlates with increased BP [8,9] 

and this relationship enhances with age [9,11]. On 

the other hand, it was shown that reduction of salt 

intake decreases BP in the normotensive as well as 

hypertensive persons [8]. Although, there were 

minor differences between races in the 

aforementioned BP lowering effect, since Asian 

and black populations were more sensitive to low 

sodium diet compared to Caucasians. In contrast, 

increased potassium intake is linked to reduce BP 

value [12]. Moreover, there is evidence that high 

potassium consumption neutralizes sodium`s 

influence on BP [10], which may be important in 

the prevention of hypertension.  

 Currently, there is discussion upon 

advantages and disadvantages of alcohol drinking 

and its connection with increased BP. A growing 

body of evidence indicates that chronic and high 

(i.e. >30g of ethanol/day) alcohol consumption is 

associated with hypertension [13]. Whereas, 

moderate alcohol consumption reduces BP and 

exhibits beneficial effects on the cardiovascular 

system [14-16]. Recommended “safe” ethanol 

amount for healthy man and nonpregnant women 

was set up to 20g/day and 10g/day, respectively 
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[17]. Therefore, alcohol should be drunk in small 

doses in order to sustain its positive properties. 

  It is widely accepted that sedentary 

lifestyle and lack of adequate levels of physical 

activity may promote hypertension. Importantly, 

numerous studies indicate on the existence of a 

direct link between physical activity and the 

reduction of BP, which is most prominent in 

Caucasians [18-20]. Accordingly, even moderate 

activity, such as 20-minutes walk a day, can 

successfully prevent the development of 

hypertension [20]. Moreover, hypotensive benefits 

have been already noted for three 30-60-minutes 

exercise sessions per week at the intensity of 50-

87% of maximal oxygen consumption [21]. 

Additionally, exercises diminish the elevation of 

BP with age, what provides the evidence that 

regular physical activity may reduce the risk of 

developing hypertension in the aging population 

[22]. 

 What is interesting, it was found that BMI 

above 25 kg/m
2
,
 
which occurs in overweight and 

obese humans, is also related with increased risk for 

high BP [23,24]. Thus, maintaining a normal body 

weight, except for balanced diet and workout, is the 

main guideline of lifestyle modifications for 

prevention and treatment of hypertension [2]. 

 

2.Hypertension secondary to diseases 

 

 To date, obstructive sleep apnea, 

renovascular diseases, and primary aldosteronism 

seem to be the most common disorders, in which 

hypertension may coexist [2]. Obstructive sleep 

apnea is a chronic malfunction caused by complete 

or partial obstructions of the upper airways during 

sleeping, which induces episodes of apnea or 

hypopnea and results in hypoxemia and sleep 

disruptions [25]. Moreover, there is a positive 

correlation between an increased risk of 

hypertension and obstructive sleep apnea [26]. It is 

suggested that more than 80% of the adult patients 

with resistant hypertension are also affected by this 

disorder [27]. The exact mechanism underlying 

obstructive sleep apnea-related hypertension is still 

unknown. Nonetheless, there is a conception that 

the increased activity of the sympathetic nervous 

system and the renin-angiotensin system (RAS) is 

responsible for alternations in structure and 

functioning of blood vessels as well as blood 

pressure elevation [28].  

 Renovascular hypertension is caused by 

narrowing or blockage of the arteries supplying the 

kidneys [29]. For this reason renal perfusion 

pressure decreases and the juxtaglomerular cells 

secrete renin. Consequently, the activated RAS 

elevates retention of sodium and water causing an 

increase in BP [29]. Renal artery stenosis results 

mainly from atherosclerotic disease (90%) [30], 

however, nonatherosclerotic disorders (such as 

fibromuscular dysplasia) can also induce 

development of renal hypertension [30,31]. 

 Primary aldosteronism (also known as 

primary hyperaldosteronism or Conn`s syndrome) 

is commonly caused by adrenal hyperplasia, 

adrenal carcinoma [32] and rarely may be inherited 

[33]. In primary aldosteronism production of 

aldosterone is too high in comparison with plasma 

sodium concentration and is not suppressed by 

sodium loading [34]. Moreover, this excessive 

aldosterone production is not sensitive to the major 

regulators of its secretion, such as renin-angiotensin 

system or plasma potassium concentration [34]. 

Since primary aldosteronism causes increased renal 

sodium reabsorption and concomitant potassium 

excretion, 9-37% of patients with this disorder may 

also develop hypokalemia apart from hypertension 

[35].  

 

ANIMAL MODELS OF HYPERTEN-

SION 

 
 The animal models provide possibility not 

only to investigate the mechanisms involved in the 

pathogenesis of certain diseases, but also to screen 

potential therapies. Among several experimental 

models, rats are the most commonly used animals 

[36]. Moreover, since the etiology of human 

hypertension is heterogeneous, several types of 

animal models for hypertension assessment are 

introduced. 

 

I. Animal models of primary hypertension  

 

 Interestingly, spontaneous development of 

high BP without any pharmacological or surgical 

intervention may occur in individual animals. This 

observation has contributed to the creation of 

genetic animal model of hypertension and enabled 

investigation of the genetic background of the 

disease. In 1963, Okamoto and Aoki introduced the 

first experimental model of primary hypertension, 

known as spontaneously hypertensive rat (SHR) 

[37]. The above researchers obtained a strain of rats 

with spontaneous hypertension by inbreeding 

Wistar-Kyoto rats with “naturally” abnormal high 

BP [37]. In this model, BP starts rising around 5-

6th week of age and systolic blood pressure (SBP) 

reaches level of 180-200 mmHg in the mature rats 

[37]. It is suggested that at least 3 loci (on 

chromosomes 1, 3 and 4) are responsible for early 

development of hypertension in SHR. While gene 

detected on chromosome 10 promotes maintenance 

of higher BP values during aging in these animals 

[38]. Similarly to hypertensive patients, the SHRs 

develop cardiac hypertrophy and failure together 

with renal dysfunction. In spite of depressed 

endothelial-dependent relaxation response, these 
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animals do not exert major vascular problems, such 

as stroke, atherosclerosis or vascular thrombosis 

[37]. Interestingly, further-developed substrain 

named stroke-prone SHR [SHR-SP], apart from 

higher BP [SBP of about ~240 mmHg], exhibits 

severe vascular damages and increased incidences 

of deaths from a stroke compared to SHRs [39]. 

However, noteworthy advantage of this model is 

similarity of stroke course in SHR-SP and humans. 

This in turn, enables application of these animals in 

stroke studies, which is a common complication of 

hypertension in humans. On the other hand, there 

are experimental models, which manifest their 

predisposition to high BP under certain conditions. 

For example, in Dahl salt-sensitive strain, increased 

dietary sodium intake leads to severe (average SBP 

is over 200 mmHg) and fatal hypertension [40]. It 

has been proven that in this strain the above 

mentioned phenomenon is regulated by 

angiotensin-converting enzyme and atrial 

natriuretic peptide receptor genes [40]. 

Interestingly, even though BP values in Dahl salt-

sensitive rats are higher compared to SHRs, the 

stage of cardiac hypertrophy is comparable in these 

two hypertension models [41,42]. However, it 

should be underlined that cardiac failure occurs 

earlier in Dahl salt-sensitive rats than in SHRs (4-5 

vs 18 months of age) [41,42]. Moreover, renal 

changes in this strain are more severe and appear 

quicker in contrast to SHRs [43]. Recent knowledge 

progress and development of genetic engineering 

enable introduction of animals with overexpression 

or deletion of genes, which are involved in the 

regulation of BP. One of the first transgenic rat 

model was TGR(mRen2)27, in which 

overexpression of the mouse Ren2 renin gene led to 

hypertension [44]. Nonetheless, commonly used in 

the studies “knockout” animals, such as mice 

lacking the genes, which code ACE [45], 

angiotensin II type 1a receptor [46], endothelial 

synthase [47] or natriuretic peptide [48] also enable 

determining the function of particular genes by 

evaluating effects of their absence. 

 

II. Animal models of secondary hypertension  

 

1.Environmental models of hypertension 

 

 Apart from studies upon genetic factors, 

the growing body of research is focused on the 

influence of environment on BP. Interestingly, it 

was demonstrated that low temperature (around 

5°C) may cause nearly 40% elevation of BP in 

animals within 3 weeks [49]. The above mentioned 

report is consistent with findings in humans, since 

people who chronically work in cold areas also 

develop hypertension [50]. Moreover, it was 

noticed that BP values in humans are higher in 

winter than in summer [51]. Furthermore, there are 

models, in which hypertension is generated by 

provoking stress in animals (e.g. using flash lights, 

loud noises or shaking) [52,53]. Additionally, high 

fat, sugar or salt diet can increase BP in animals 

and may be implemented as a method of 

hypertension induction [54,55]. Importantly, it is 

suggested that increased activity of the RAS, as 

well as the sympathetic nervous system, plays a 

pivotal role in the pathogenesis of described above 

environmental models of hypertension [55-58]. 

 

2. Renal hypertension 

 

 It is well known that renovascular 

disorders can cause an elevation of BP. Similar 

conditions may be triggered in animals by applying 

surgical procedures. There are two main methods, 

which are widely used for this purpose.  

 The first one, created in 1934 by Goldblatt 

et al. [59], is performed by a constriction of one or 

both renal arteries using a small clamp. To date, 

there are following Goldblatt`s technique variants: 

one-kidney one-clip (1K1C; one renal artery is 

constricted and concomitantly the contralateral 

kidney is removed), two-kidney one-clip (2K1C; 

one renal artery is constricted and the contralateral 

kidney is left intact) and two-kidney two-clip 

(2K2C; aorta or both renal arteries are constricted) 

[60]. In contrast to other Goldblatt’s models, in 

1K1C hypertension only initial increase of BP is 

due to RAS activation. As a result of disruption in 

the functioning of the remaining kidney, no 

compensatory excretion of sodium and water is 

observed and greater volume of fluid is retained. 

Taking into consideration the mechanism of BP 

elevation, the 1K1C model represents volume- 

rather than RAS-dependent type of hypertension 

[61]. Increased BP in the 2K1C model results from 

chronic hyperactivity of RAS, which is caused by 

artery constriction. Since one kidney is intact, it 

compensates impaired function of the second 

kidney and help sustain fluid and electrolyte 

balance in this model. Therefore, 2K1C model of 

hypertension is sensitive to RAS inhibition, but not 

to diuretics action [43]. In turn, the mechanism 

involved in the induction of the 2K2C hypertension 

is similar to the 2K1C model. However, more 

severe renal damages are observed in 2K1C rats, 

including acute renal failure and a high incidence of 

spontaneous stroke [62]. 

 The second method of renovascular 

hypertension generation is based on procedures, 

which provoke renal parenchyma damages. It can 

be performed for instance by a renal mass 

reduction, which mimics chronic renal disease [63]. 

On the other hand, the external compression of the 

kidney e.g. by wrapping the kidney in cellophane, 

is often applied to obtain perinephritic fibrosis, 

which is formed after kidney transplantation [64]. 
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Furthermore, microembolization-induced ischemia 

may be used to generate nephrosclerosis [65]. As 

high salt diet remarkably accelerates hypertension 

progression in the above mentioned animal models, 

it may be used in combination with surgical 

procedures to save time and costs of experiments 

[66].  

 

3. Endocrinal hypertension 

 

 Pharmacological approaches for the 

induction of hypertension are also extensively used, 

e.g. in models of endocrine-related hypertension, 

such as deoxycorticosterone acetate (DOCA)-salt 

rats. In this model of secondary hypertension 

synthetic mineralocorticoid derivate - DOCA, 

combined with sodium chloride in unilateral 

nephrectomised rats produce volume overload 

hypertension [67]. The most important advantage of 

DOCA-salt hypertension is markedly depressed 

RAS activity, which enables its use in studies as an 

angiotensin-independent model [68]. It was found 

that DOCA-salt hypertension causes an elevation in 

the sympathetic nervous system activity [69]. 

Moreover, there is enhanced vasopressin secretion, 

which additionally increases renal water retention 

and leads to vasoconstriction [70]. Furthermore, 

DOCA-salt hypertension immediately progresses to 

severe hypertension (SBP < 200 mmHg) and 

cardiac hypertrophy. Therefore, it is useful model 

for experimental investigation of all its 

complications, especially those in the 

cardiovascular system [67]. It should be mentioned 

that other mineralocorticoids, such as aldosterone 

or glucocorticoids e.g. cortisol, can also initiate this 

type of hypertension [71,72]. 

 

 

 

 
 

 
Figure 1. Animal models of hypertension in experimental research. 1K1C – one-kidney one-clip, 2K1C – two-

kidney one-clip, 2K2C – two-kidney two-clip, AT1a receptor – angiotensin II type 1a receptor, ACE – 

angiotensin-converting enzyme, DOCA- deoxycorticosterone acetate, SHR – spontaneously hypertensive rat, 

SHR-SP – stroke-prone spontaneously hypertensive rat, TGR(mREN2)27 – rats overexpressing the mouse Ren2 

gene. 
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CONCLUSIONS 

 
 According to new guidelines for 

hypertension detection, nearly half of the human 

population may suffer from this disorder. Since 

cardiovascular diseases are the major cause of death 

globally, it is not surprising that strategies for 

treatment and prevention of hypertension are 

currently one of the most common area of research.  

 The present report describes the most 

popular animal models of hypertension as well as 

provides the information concerning novelties in 

the field of high blood pressure. We believe that 

this review will help understanding how important 

issue is hypertension. Moreover, we present 

comprehensive scope of experimental animal 

models, which are used for hypertension evaluation 

(Figure 1). 
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