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Abstract: Insurers wanting to provide protection against unforeseen losses should establish an 
appropriate level of reserves, which should balance the risk borne by the insurer so as to guarantee the 
financial security of the insured. The system including the financing requirements tailored to the real 
risks is called the Solvency II. According to that the valuation of classic life insurance should 
consider the real risk, which includes risk of death and the change in value of money over time. This 
method of calculating reserves does not ensure the protection of collected funds by aggregation and 
the individual risk of longevity, which may negatively affect the long-term financial stability of 
insurers as well as the level of financial security for the insured. Therefore, the aim of this paper is to 
modify the calculation methods and, above all, to correct reserves within the period of insurance, 
taking into account the current expectation of the future projected length. 

Keywords: longevity risk, Solvency II, required mathematical premium reserves. 

1. Introduction 

Insurance activity is subject to special supervision due to its social and economic 
importance. Many requirements are imposed on the insurance companies which 
aim to ensure their solvency and guarantee the security of the insured persons.  
The key aspect of the regulatory framework is the necessity to set the appropriate 
level of capital. The insurer wants to be protected against unforeseen losses based 
on the valuation of cash flows, which should determine its appropriate level, 
offsetting the insurer's risk so as to ensure the financial security of the insured. The 
system that contains the financing requirements tailored to the real risks that 
insurance companies are exposed to is Solvency II [Directive of the European 
Parliament and Council 2009/138/EC Art. 77]. Solvency II is based on the greater 
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dependence of capital on the amount of risk taken by insurance companies. In other 
words, capital is enough to cover the actual risk. Valuations should be made based 
on their current value of disposal, i.e. the value should correspond to the current 
amount that the insurance company would have to pay if it were to immediately 
transfer its contractual rights and obligations to another insurance company. The 
methods for calculating mathematical premium reserves in traditional insurance 
can be found in the classic actuarial literature.  The reserve is calculated as the 
actuarial value of the accrued future cash flows, which takes the actual risk into 
account. To achieve this goal, insurers' assets are to be valued on the basis of their 
real market value,  (best estimate). Thus, an insurer wishing to be protected against 
unforeseen losses based on the valuation of cash flows should establish an 
appropriate level of provisions that will balance the risk borne by the subject of 
insurance, such as death risk in the case of life insurance (LI) or life expectancy in 
the case of endowment insurance (EI) – the risk of longevity. 

The challenges associated with the longevity risk are related to the fact that the 
longevity trend will change in the future and will be different than those assumed in 
the original calculations. In other words, it is the risk of an inadequate estimation of 
the future mortality rate [Bartkowiak 2011]. As a consequence, insurance companies 
are not able to fully rely on official domestic indicators and must manage the risk of 
longevity on their own. 

According to the International Association of Insurance Supervisors (IAIS), 
those who risk longevity will have to pay extra for each year of longevity 
underestimation. The IAIS emphasizes that life expectancy is rising faster than 
expected, thus challenging everyone that accepts responsibility for the risk of 
longevity (life expectancy), i.e. the potential risk associated with the growing life 
expectancy of the beneficiaries of insurance policies. In the opinion of the IAIS, 
institutions that take the risk of longevity should counteract the problems resulting 
from the increase in life expectancy [IAIS Global... 2014]. Since the observed 
changes in mortality rates imply unexpected increases in life expectancies, the 
corresponding actuarial values underlying the calculation are also mathematical 
reserves of contributions [Trzpiot 2015]. On the one hand, it has become important to 
manage the longevity risk using life-expectancy tables containing long-term trend 
forecasts forming the basis for estimating the expected life expectancy. On the other 
hand, insurers will be required to adjust their reserves during the insurance period. 

The article examines whether insurance companies that meet the long-term risk 
of longevity should ultimately create higher accumulated capital in order to secure 
future payments. It investigates whether they should use a correction mechanism 
based on adjusted estimates of the expected future life expectancy of the insured, and 
if the creation of an additional emergency fund is a solution to the problem. 
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2. Review of the literature 

The longevity risk is one of the largest, although least understandable, types of risk to 
which both life insurers and pensioners are exposed [Crawford et al. 2008].  
In particular, the risks associated with the payment of pensions and annuities which 
turned out to be longer than expected, are the main reasons for ‘non-peace’ in terms 
of the stability of existing savings products for pension purposes [Biffis, Blake 
2013]. Therefore many aspects have been considered in the literature of the subject in 
terms of correctly modeling mortality processes as well as protecting against the risk 
of longevity. To reflect the future evolution of the mortality rate, deterministic 
modeling and analytical models were traditionally used. In recent years the ability of 
insurance companies to correctly read demographic trends has improved signi-
ficantly, but pensioners and insurers that pay insurance products are still heavily 
exposed to longevity risk. In fact, even if they correctly predict mortality rates, there 
still remains uncertainty about their future tendencies, hence it is necessary to use 
stochastic models  to correctly measure the systematic part of the risk. In connection 
with this, numerous works consider the use of a stochastic approach to modeling 
mortality dynamics, (for example: [Ballotta and Haberman, 2006; Biffis, 2005; Biffis 
and Denuit, 2006; Cairns et al. 2006; Cairns et al. 2008; Dahl, 2004; Dahl, Møller 
2006; Milevsky, Promislow 2001; Renshaw, Haberman 2003; 2006). The use of 
stochastic models is now even more essential in connection with the development of 
the Solvency II system. To protect against the risk of longevity, securities associated 
with longevity of the base populations were proposed,  assessedin Blake et al. (2006) 
and Ngai and Sherris [2011] among others. Dahl et al. [2008] were the first to 
examine the protection against the risk of systematic longevity using securities 
associated with long-term eternity. Existing research considers the benefits of using 
hedging strategies with financial risk measures. 

In addition to the problems widely discussed in the literature regarding the 
correct modeling of longevity risk, the correct valuation of products related to 
longevity is of equal importance. However, this problem is discussed in the literature 
to a much lesser extent and refers to pension and annuity contracts. Traditionally, the 
valuation of annuity contracts was based on consolidated actuarial techniques that 
amortized the mortality risk, but these methods do not work in the context of the 
growing problem of long-term risk. Denuit et al. [2011] and Richter and Weber 
[2011] proposed concluding contracts in which benefits would be adjusted in time in 
accordance with the observed value of the longevity index. In these types of indexed 
contracts, pension providers reduce the risk resulting from longevity to the level of 
‘safe’ (with the probability of a shortage) by creating an additional emergency fund. 
This fund is financed by the insured in the form of an additional fee, which either 
increases the contractual premium or reduces benefits. In Alho et al. [2012] the 
authors investigate the consequences of these changes. The problem of linking the 
benefits paid to mortality rates is also undertaken in the works of Goldsticker [2007], 
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Kartashov et al. [1996] and van de Ven and Weale [2008]. Denuit et al. [2015] 
proposed an alternative (or complementary) way of sharing the risk of longevity 
which includes the correction of the deferred period, while maintaining payments  
at a constant level. This approach to the problem, however, does not include analysis 
from the point of view of life and longevity insurance, and the methods of calculating 
and adjusting their required reserves. 

3. The longevity risk 

Longevity risk applies to both individuals and entire cohorts. The individual risk of 
longevity (sometimes called specific longevity risk) refers to when a person  lives 
longer than expected [Pitacco et al. 2009]. Individual risk of longevity can lead to 
negative consequences for individuals but does not pose a threat to the financial 
stability of the insurer. However, there is also a aggregated longevity risk, sometimes 
called the risk of a trend, which affects entire populations. Life expectancy will be 
longer than expected. In other words, it is the risk of the inaccurate estimation of the 
future mortality rate trend [Bartkowiak 2011]; together, the specific and aggregated 
risk of longevity is the total risk of longevity (see [Blake, Borrows 2001]). Similar to 
longevity risk is mortality risk defined analogously as the risk that a person or group 
of people will live shorter than expected. Logically, the increase in long-term risk is 
equivalent to the decrease in mortality risk and vice versa, showing why these terms 
are often used interchangeably in literature. The longevity risk can be decomposed 
into the following components: 
• the risk that a someone will die earlier or later than expected (volatility risk),  
• the risk of the incorrect estimation of the current level of mortality for a given 

population (risk  of mortality rate),  
• the risk of the incorrect estimation of the future trend in mortality rate (risk of 

mortality rate trend).  
The risk of volatility and mortality rate are by nature a specific risk, and their 

impact may be reduced by diversification. This means that the people whose life 
expectancy exceeds that of the average can be balanced by those that do not live to 
the average, but the risk of trend is a systematicrisk and therefore non-diversifiable 
one. The risk of trend results from the possibility of unexpected changes in life 
expectancy resulting from changes in lifestyle, diet or technological progress. For 
insurance companies, the aggregated risk of longevity is particularly important, 
which plays a crucial role in the insurance valuation and its calculations, because the 
incorrect estimation of the further life expectancy of insured persons may result in 
the accumulated funds being insufficient to cover future benefits, and thus may 
disturb the financial liquidity of the insurance company [MacMinn et al. 2006]. 
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4. Cash flow in LI and EI insurance 

Each life insurance (LI) and endowment (EI) contract involves specific payment 
streams made by the insured (premiums) and the insurer (benefits). These payments 
create cash flows between the insurer and the insured, and the determination of their 
amount is essential for conducting policy valuation. The main role in these 
calculations is played by the present cash flows, i.e. the current equivalent of future 
payments. 
 
Definition: The valuation of the financial stream  𝐹𝑡, i.e. the function of the currently 
present payments t made during the period of time T, is determined by the following 
formula [Habermann, Pitacco 1999]: 

𝑍𝑍𝑡(𝑇) = 1
𝜐(𝑡)∫ 𝜐(𝜏)𝑑𝑑(𝜏)𝑇 . 

When calculating the insurance, the payment stream marked with the symbol 
𝐹(𝑡) should include all payments resulting from the concluded contract. These 
payments can be divided into three groups: 
• insurance premiums payable by the insured and pensions paid by the insurer, 
• a benefit in the amount of the sum that the insured paid during the period of 

insurance in the case of the insured's death, 
• benefits paid to the survivor until the end of the insurance period. 

The following variables of individual payment streams were adopted in the 
paper: 
• the premium paid by the insured at time 𝑡 is 𝛱(𝑡), 
• the amount of pension paid at time 𝑡 for disability is 𝑟(𝑡), 
• the amount of the one-time payment paid by the insurer due to the insurance 

period ending is 𝑑(𝑛), 
• a one-off benefit related to the death of the insured during the period of insurance 

at time 𝑡 is equal to 𝑐(𝑡). 
The actuarial value of a payment in the classic life or endowment insurance is the 

expected value of the present value amount of benefit or premium. In life and 
endowment  insurances, the actuarial value of the payment stream is calculated as the 
conditional expected value of discounted payments, provided by the entire history of 
the process and determined by the general formula [Bowers et al. 1997]: 

𝐸[𝑍𝑍𝑡(𝑇 ∨ 𝑛)|ℱ𝑡], 

where is filtration defining the process of history at time t. 

The new solvency assessment system conforming to Solvency II is to be adapted 
to the real risks insurance companies are exposed to. In the case of insurance 
institutions, potential risks are specific to the types of contracts concluded and cash 

{ } Ttt ≤≤0F
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flows should be valueted in consideration of the total risk to which the insurer is 
exposed.This includes filtration providing the comprehensive information available 
at time t regarding insurance options, mortality and interest rates. Consequently the 
history (filtration) can be divided into groups which should be included in the 
valuation [Homa 2015a]:  
• ℒ𝑡  is knowledge about contract options,  
• 𝒢𝑡 is  knowledge of the value of a monetary unit,  
• ℋ𝑡 is knowledge about the mortality process. 

Filtration ℒ𝑡 interpreted as the contract options risk, determines the type of cash 
flows resulting from the concluded insurance policy. Furthermore it assumes that the 
financial market is ideal and everyone has the same knowledge about it, and that the 
information is obtained only from observation of the price process 𝑆𝑡 and the process 
of value of the monetary unit Bt.  At that time, one assumes that the 𝒢𝑡  is interpreted 
as knowledge obtained until t is: 𝒢𝑡 = 𝒢𝑡𝑆∧𝐵. On the other hand, ℋ𝑡 is the knowledge 
obtained until time t of the mortality process, and information about it determines the 
future life of the insured at the age of 𝑥, marked as 𝑇𝑥 ≡ 𝑇. Therefore, it is assumed 
that: ℋt = ℋ𝑡

𝑇 = σ(Ι(𝑇 > t), 0 ≤ 𝑡 ≤ 𝑛).  
Thus, filtration ℱ𝑡  determines the comprehensive information available at time t 

regarding the process of mortality and price formation takes the following form:  

ℱ𝑡 = ℒ𝑡 ∧ 𝒢𝑡 ∧ℋ𝑡. 
Considering this filtration, the actuarial value of the payment was determined: 

• for the end of the insurance period,  
• for death during the period of insurance, 
constituting the basis for further calculation of the reserves. Due to the survival of the 
determined moment n (the end of the insurance period), the insurer will pay the 
insured the benefit. The present value at moment 𝑡 is 𝑍𝑍𝑡(𝑛) and is equal to: 

𝛪{𝑇 > 𝑛} ∙ 𝑍𝑍𝑡(𝑛) = 𝛪{𝑇 > 𝑛} ∙
𝜐(𝑛)
𝜐(𝑡)

𝑑(𝑛). 

Thus the actuarial value of the payment is equal to: 

𝐸[𝛪{𝑇 > 𝑛} ∙ 𝑍𝑍𝑡(𝑛)|ℱ𝑡] = 𝐸[𝛪{𝑇 > 𝑛} ∙ 𝑍𝑍𝑡(𝑛)|ℒ𝑡 ∧ 𝒢𝑡] ∙ 𝐸[𝛪{𝑇 > 𝑛} ∙
𝑍𝑍𝑡(𝑛)|𝛪(𝑇 > 𝑡)] =  𝐸[𝛪{𝑇 > 𝑛}|𝛪(𝑇 > 𝑡)] ∙ 𝐸 �𝜐(𝑛)

𝜐(𝑡) 𝑑(𝑛)|ℒ𝑡 ∧ 𝒢𝑡� = 𝑝𝑛−𝑡 𝑥+𝑡 ∙

𝐸 �𝜐(𝑛)
𝜐(𝑡) 𝑑(𝑛)|ℒ𝑡 ∧ 𝒢𝑡�. 

On the other hand, in the case of life insurance, the death payment is paid to the 
insured upon death (i.e. at time 𝑇 of insurance) and, similarly to the endowment 
insurance (EI), the actuarial value is equal to the following equation for the life 
insurance (LI): 
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𝐸[𝑍𝑍𝑡(𝑇 ∨ 𝑛)|ℱ𝑡] = 𝐸[𝛪{𝑇 ≤ 𝑛} ∙ 𝑍𝑍𝑡(𝑇)|ℱ𝑡] = 

𝐸 �∫ 𝜐(𝜏)
𝜐(𝑡)

𝑇∨𝑛
𝑡 𝑐(𝜏)𝑑𝑑{𝜏 ≤ 𝑛}|ℱ𝑡� = ∫ 𝐸 �𝜐(𝜏)

𝜐(𝑡) 𝑐(𝜏)|ℱ𝑡� ∙ 𝐸[𝑑𝑑{𝜏 ≤ 𝑛}|𝛪(𝑇 > 𝑡)]𝑇∨𝑛
𝑡 =

∫ 𝜐(𝜏)
𝜐(𝑡) 𝑐(𝜏) ∙ 𝐸[𝛪{𝜏 ≤ 𝑛} ∙ 𝜇(𝑥 + 𝜏)|𝛪(𝑇 > 𝑡)]𝑑𝑑𝑇∨𝑛

𝑡 =

∫ 𝜐(𝜏)
𝜐(𝑡) 𝑐(𝜏) ∙ 𝑝𝜏−𝑡 𝑥+𝑡𝜇(𝑥 + 𝜏)𝑑𝑑𝑇∨𝑛

𝑡 .  

The last type of benefit provided in the contract includes the payment of 
disability pension resulting from an accident. In order to value this type of cash flow, 
it was assumed that the future life of the insured person was classified as 𝑇𝑥𝑍 ≡ 𝑇𝑍. 
The actuarial value of this type of annuity is equal to: 

𝐸[𝑍𝑍𝑡(𝑇 ∨ 𝑛)|ℱ𝑡] = 𝐸[𝛪{𝑇𝑍 ≤ 𝑛} ∙ 𝑍𝑍𝑡(𝑇)|ℱ𝑡] =  

𝐸 �∫ 𝜐(𝜏)
𝜐(𝑡)

𝑇∨𝑛
𝑡 𝑟(𝜏)𝛪{𝜏 ≤ 𝑛}|ℱ𝑡� = ∫ 𝐸 �𝜐(𝜏)

𝜐(𝑡) 𝑟(𝜏)|ℱ𝑡� ∙ 𝐸[𝛪{𝑇𝑍 ≤ 𝑛}|𝛪(𝑇 > 𝑡)]𝑑𝑑𝑇∨𝑛
𝑡 =  

∫ 𝜐(𝜏)
𝜐(𝑡) 𝑟(𝜏) ∙ 𝑝𝜏−𝑡 𝑥+𝑡

𝑍 𝑑𝑑𝑇∨𝑛
𝑡 . 

5. Mathematical reserves  

The new solvency assessment system compliant with Solvency II is to be adapted to 
the real risks that insurance companies are exposed to. Therefore, taking into account 
the above extended filtration and the extended actuarial risk required under Solvency 
II, the reserve should be determined as a probability-weighted average of future cash 
flows [Homa 2015b]:  

𝑉𝑡 = 𝐸(𝑍𝑍𝑡 − 𝑍𝑍𝑡|ℒ𝑡 ∧ 𝒢𝑡 ∧ ℋ𝑡), 

where: 𝑍𝑍𝑡 is the present value at the moment 𝑡 payout value, 𝑍Π𝑡 is present value 
atr the moment 𝑡 of the premium stream. 

According to the above, and assuming the independence of the insurance and 
financial market that generate the history of the process, the following is obtained: 

𝑉𝑡 = 𝐸(𝑍𝑍𝑡 − 𝑍𝑍𝑡|ℒ𝑡 ∧ 𝒢𝑡) ∙ 𝐸�𝛪{𝑇>𝑡}|{𝑇 > 𝑡}�. 

Assuming that 𝑝𝑡 𝑥 i 𝜇(𝑥 + 𝑡) refers to the probability of survival and the 
intensity of mortality, and by using the derived formulas of the actuarial value of 
cash flows, the reserve formula takes the form of: 

𝑉𝑡 = 𝑝𝑛−𝑡 𝑥+𝑡𝐸(𝑍𝑍𝑛|ℒ𝑡) + 

∫ 𝑝𝜏−𝑡 𝑥+𝑡𝜇(𝑥 + 𝜏)𝐸(𝑍𝑍𝑡|ℒ𝑡)𝑑𝑑
𝑇∨𝑛
𝑡 − ∫ 𝑝𝜏−𝑡 𝑥+𝑡𝐸(𝑍𝑍𝑡|ℒ𝑡)𝑑𝑑

𝑇∨𝑛
𝑡 . 
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Knowing that there is a fixed rate and continuous capitalization market, the value 
of a monetary unit is equal to: 

𝐵𝑡 = 𝑒𝛿𝛿 
and indexing the contract option risk and filtration ℒ𝑡 = 𝜎(𝑋(𝑡) = 𝑗, 
 𝑗 ∈ {1, 2, … ,𝑘}), the level of required reserves at moment 𝑡, when 𝑗 − policy option 
is given by the formula: 

𝑉𝑡
𝑗 = 𝑒−𝛿(𝑡−𝜏) 𝑝𝑛−𝑡

𝑗
𝑥+𝑡𝑊𝑛

𝑗 + ∫ 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡
𝑗
𝑥+𝑡𝜇(𝑥 + 𝜏)𝑑𝑊𝑗 (𝜏)𝑇∨𝑛

𝑡 +

∫ 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝑑𝛱
𝑗 (𝜏)𝑇∨𝑛

𝑡 =
𝑒−𝛿(𝑡−𝜏) 𝑝𝑛−𝑡

𝑗
𝑥+𝑡𝑑

𝑗 (𝑛) + ∫ 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡
𝑗
𝑥+𝑡�𝜇(𝑥 + 𝜏)𝑐𝑗(𝜏) + 𝑟(𝜏)�𝑑𝑑𝑇∨𝑛

𝑡 +

∫ 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜋(𝜏)𝑇∨𝑛
𝑡 𝑑𝑑. 

In the above formula, the first two components are the present values of future 
payments, reduced by the current value of premiums paid. This is the capital which 
should be secured by an insurance company offering life and endowment insurance 
to secure funds for future payments, and its valuation can be made cyclically at any 
time during the insurance period. It is essential that all components are valued with 
the assumption of a certain longevity trend, but this changes the function.  
The observed changes in mortality rates imply unexpected increases in life 
expectancy, while the corresponding actuarial values of payments constituting the 
basis for reserves calculations increase. In the case of premiums valued at the time 
the insurance agreement is made, the actuarial value does not change as a result of  
a change in longevity. Therefore, in order to meet this long term risk, insurers should 
ultimately create higher or lower (depending on the type of contract LI or EI) 
accumulated capital to secure future payments.  

In cases when the insurance company has a large portfolio, the law of large 
numbers states that the risk of death is diversified. This concerns the valuation of 
benefits, but the insurer in the calculation of premiums uses historical knowledge 
available at the time of conclusion of the insurance and mortality risk. So the changes 
of this risk during the insurance period cannot be included in the designated 
premium. This premium will not cover the real risk taken by the insurer, and the 
mathematical reserve created on its basis will not protect the collected funds by 
aggregated and individual risks of longevity which may negatively affect the long- 
-term financial stability of insurers. Therefore, in the case of life and endowment 
insurance it is necessary not only to estimate the trend of the expected life 
expectancy of the insured, but above all to create an emergency fund resulting from 
the financial shortages arising during the insurance period due to changes in the risk 
of the mortality rate over time. In the case of mixed portfolios, it will be possible to 
cover shortages from life insurance from the surplus assigned to LI's insurance 
policies.  
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6. Application examples – results 

As an example, a contract of n-year standard life insurance (LI), endowment 
insurance (EI) and mixed insurance (ELI) was analyzed, along with additional 
contacts acknowledging  the accident  options: 
• accidental death insurance (ADI),  
• accident insurance (AI).  

The subject of the basic insurance is the life of the insured. Under such, an 
insurance company pays out the amount of c m. u. (monetary unit) in the case of the 
death of the insured or the amount d m. n. in the case of the insured living to the end 
of the insurance period. The subject of the additional contract is the health of the 
insured and the ADI and AI options cover full or partial permanent disability caused 
by an accident. Given this, an insurance company pays out usually double the 
insurance sum or the pension. Cash flows characteristic for this type of insurance are 
presented in Table 1. 

Table 1. Payment streams for insurance 

Premiums Pension from 
AI 

Benefit due to the end  
of the insurance 

One-time benefit 
due to ADI 

One-off payment 
for death 

𝜋(𝑡) = 𝜋 𝑟𝐴𝐴(𝑡) = 𝑟 𝑑(𝑡) = 𝑑 𝑐𝐴𝐴𝐴(𝑡) = 2𝑐 𝑐(𝑡) = 𝑐 

Source: own study. 

To determine the value of the required reserves, the present and actuarial values 
of the payment streams resulting from the concluded contract should be specified. 
The actuarial value of total cash flows for the insurance of  LI, EI and ELI is 
presented in Table 2. 

Table 2. Actuarial value of future cash flows for insurance with additional options AI and ADI 

Type of payment Actuarial value 

1 2 

Premiums 𝐸[𝑍Π𝑡(𝑇 ∨ 𝑛)] = 𝜋 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡

𝑇∨𝑛

𝑡

𝑑𝑑 

Pension from AI 𝐸[𝑍R𝑡(𝑇 ∨ 𝑛)] = 𝑟 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡
𝐴𝐴 𝑑𝑑

𝑇∨𝑛

𝑡

 

Benefit due to the end of the insurance period 𝐸[𝑍D𝑡(𝑇 ∨ 𝑛)] = 𝑑𝑒−𝛿(𝑡−𝜏) 𝑝𝑛−𝑡 𝑥+𝑡 
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Table 2, cont. 

1 2 

One-off payment for death  𝑐 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜇(𝑥 + 𝜏)𝑑𝑑
𝑇∨𝑛

𝑡
 

One-time benefit due to ADI 2𝑐 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜇𝐴𝐴𝐴(𝑥 + 𝜏)𝑑𝑑
𝑇∨𝑛

𝑡

 

Source: own study. 

The value of reserves that an insurer should have at the time of the insurance 
period to cover future benefits resulting from the concluded policies depends on the 
policy's status. If at time t the insured person is healthy and pays premiums,  
the required level of mathematical reserves should be calculated from the formula: 

𝑉𝑡 = 𝑑𝑒−𝛿(𝑡−𝜏) 𝑝𝑛−𝑡 𝑥+𝑡 + 𝑐 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜇(𝑥 + 𝜏)𝑑𝑑
𝑇∨𝑛

𝑡

+ 

𝑟 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡
𝐴𝐴 𝑑𝑑

𝑇∨𝑛

𝑡

+ 2𝑐 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜇𝐴𝐴𝐴(𝑥 + 𝜏)𝑑𝑑
𝑇∨𝑛

𝑡

− 

 𝜋 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡

𝑇∨𝑛

𝑡

𝑑𝑑. 

On the other hand, the activation of the additional option affects the change in the 
level of required mathematical reserves of the premiums that the insurer should have 
at time t and they are equal to: 

𝑉𝑡𝐴𝐴 = 𝑑𝑒−𝛿(𝑡−𝜏) 𝑝𝑛−𝑡 𝑥+𝑡 + 𝑐 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡𝜇(𝑥 + 𝜏)𝑑𝑑
𝑇∨𝑛

𝑡

+ 

𝑟 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡
𝐴𝐴 𝑑𝑑

𝑇∨𝑛

𝑡

−  𝜋 � 𝑒−𝛿(𝑡−𝜏) 𝑝𝜏−𝑡 𝑥+𝑡

𝑇∨𝑛

𝑡

𝑑𝑑. 

Both formulas form the basis for calculating the mathematical reserves resulting 
from insurance with an insurance sum of 1000j.p and a risk-free rate of 5%. In order 
to consider the changes in mortality risk in the future analysis and calculations to set 
the probability of survival and death, the following were used: 
• current life tables (variant I), 
• prognoses considering the longevity risk and changes in the mortality rate trend 

(variant II).  
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On this basis the parameters of the mortality function were estimated 𝜇(𝑥 + 𝑡) in 
two variants and in the intensity of an accident 𝜎(𝑥 + 𝑡), which was based on the 
Gompertz-Makeham model. The model describes the actual intensity of deaths 
considering factors depending on age which Gompertz had considered, who claimed 
that mortality is the result of two types of causes. The first one are illnesses which 
affect both young and old people equally, while the second cause is the decline in a 
human’s ability to oppose death. Makehan, however, noticed that certain factors also 
affect this force regardless of age. These factors are aggregated and appear in the 
model in a constant form. The obtained model is called the Gompertz-Makeham law 
and the distributor has the following form [Ostasiewicz 2011]: 

𝐹(𝑥) = �
0                                                      𝑥 ≤ 0
1 − 𝑒𝑒𝑒�−𝐴𝐴 − 𝐵

𝐶�𝑒
𝐶𝐶−1��      𝑥 > 0 . 

The maximum likelihood estimation of the parameters of the Gompertz- 
-Makeham function of mortality are presented in Table 3.  

Table 3. Estimators of the greatest credibility of the Gompertz-Makeham function 

Parameters 
gambling function 

Variant I 
 

Variant II 
  

𝐴 0.0000100 0.000475 0.0004 

𝐵 0.000143493 0.000068272 3.4674E-06 

𝐶 1.0869039 1.091756 1.148153621 

Source: own study based on: http://repozytorium.uni.lodz.pl/:8080/xmlui/bitsream/handle/110 89/ 
5393/Wiad%20Ubezp% 202003%2011-12.pdf. 

On this basis the appropriate probabilities were determined by solving the 
Chapman-Kolmogorov differential equations using a standard approach based on 
national mortality rates (variant I) and considering longevity risk based on trend 
forecasts (variant II). The level of required mathematical provisions for LI, EI and 
ELI insurance in variants I (continuous line) and II (dashed line) was determined and 
presented in the following areas1. 

From Figures 1 to 3 it can be concluded that the risk of longevity does not affect 
the functional form of the mathematical reserves and does not change its structure 
during the insurance period. This means that LI contract reserves are an ascending- 
-descending function of time with zero final reserve, whereas in the case of EI it 
grows with a non-zero final reserve.  

 
 

                      
1 The calculations were made in Mathematica 8.0.  

)(1 tx +µ )(2 tx +µ )( tx +σ
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x = 30, n = 20                                        x = 50, n = 20 

  

Fig. 1. Comparison of the amount of the required mathematical reserve in LI in variant 1 and 2 

Source: own study. 

  

Fig. 2. Comparison of the amount of the required mathematical reserve in EI in variant 1 and 2 

Source: own study. 

  

Fig. 3.  Comparison of the amount of the required mathematical reserve in ELI in variant 1 and 2 

Source: own study. 

Depending on the type of basic contract (EI or ELI), a surplus or deficit of 
provisions is observed, which arises during the insurance period as a result of 
changes in longevity risk, as shown in Figures 4 to 6. 
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x = 30, n = 20                                           x = 50, n = 20 

        

Fig. 4. The amount of surplus of reserves resulting from the risk of longevity during the period of LI 
contract 

Source: own study. 

      

Fig. 5. The amount of deficit of reserves resulting from the risk of longevity during the period of EI 
contract 

Source: own study. 

   

Fig. 6. The amount of surplus of reserves resulting from the risk of longevity during the period of ELI 
contract 

Source: own study. 
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Based on the above figures it can be clearly stated that the impact of longevity 
risk on the level of required reserves is different in the case of life insurance contracts 
LI, EI or ELI. Obviously this is due to the fact that the increase in the risk of 
longevity is equivalent to the decrease in mortality risk. Hence the incorrect 
estimation of the future mortality rate ratio translates into an initial overestimation of 
life insurance reserves and its present valuation in the case of life insurance. 
Therefore, financial shortages relate to EI insurance of a savings character because 
the  risk  of  longevity  significantly  increases  the  amount of mathematical premium 
reserves required in accordance with Solvency II. In life insurance (LI), the insurer 
should create a reserve fund at a lower level, meaning that it could release these 
funds and use them to cover shortages arising from EI type insurance. However,  
at the same time, the results of the performed calculations confirm that the insurer 
offering a composite life and endowment insurance product must also collect  
a higher amount of basic reserves. Free funds are not sufficient to secure the insurer's 
solvency in the future without additional financial expenses. 

7. Conclusion 

In this work the prospective method has been presented to calculate insured value 
required for the so-called mathematical premium reserves, which is in accordance 
with Solvency II. The obtained results illustrate the impact of the choice of life 
expectancy tables on the conducted net premium calculations in insurance and 
confirm the significant impact of longevity risk on the revaluation or underestimation 
of provisions, depending on the type of contract and age of the insured persons. The 
research results show that, firstly, insurance companies cannot rely solely on official 
domestic indicators that form the basis for the valuation of life insurance upon 
entering into this type of insurance. This is means that it is necessary to introduce the 
dynamic life tables  (DLT) in place of the traditional, which will allow the inclusion 
of an additional emergency fund in the calculations, intended to cover the risk of 
changing the trend, allowing for the elimination of the adverse impact of long-term 
risk. The obtained results confirm that the adjustment of provisions during the period 
of insurance, considering the risk of longevity and the creation of an emergency fund 
from the funds released from the use of UG, give the possibility of partial 
compensation, but the determination of the required funds at the level that secures the 
insurer's solvency absolutely requires additional financial expenditure. 
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RYZYKO DŁUGOWIECZNOŚCI A WYMAGANY POZIOM REZERW 
W UBEZPIECZENIACH NA ŻYCIE I DOŻYCIE 

Streszczenie:  Ubezpieczyciel, chcąc zabezpieczyć się przed nieprzewidzianymi stratami, powinien 
ustalić odpowiedni poziom rezerw, które powinny zrównoważyć ponoszone przez ubezpieczyciela 
ryzyko, tak aby zapewnić bezpieczeństwo finansowe ubezpieczonych. System zawierający wymogi 
finansowania dopasowane do rzeczywistych typów ryzyka to  Solvency II. Zgodnie z nim wycena 
klasycznych ubezpieczeń na życie powinna  uwzględniać rzeczywiste ryzyko, które obejmuje: ryzyko 
śmierci oraz zmianę wartości pieniądza w czasie. Taki sposób kalkulacji rezerw nie zapewnia 
ochrony gromadzonych środków przed zagregowanym i indywidualnym ryzykiem długowieczności, 
co może negatywnie wpłynąć na długoterminową stabilność finansową ubezpieczycieli, a także na 
poziom zabezpieczenia finansowego ubezpieczonych. W związku z tym celem artykułu jest 
modyfikacja sposobów kalkulacji, a przede wszystkim korekty rezerw w okresie trwania ubez-
pieczenia z uwzględnieniem aktualnego trendu dalszej oczekiwanej długości. 

Słowa kluczowe: ryzyko długowieczności, Solvency II, wymagany poziom rezerw matematycznych.  
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