POLSKI UNTWERSYTET NA OBCZYZNIE
W LONDYNIE

ZESZYTY NAUKOWE

SERIA TRZECIA: NR 2, 2014

STEFAN STANCZYK

PUNO w LONDYNIE

ON COMPUTER-ASSISTED
SOFTWARE ENGINEERING
— A PERSONAL VIEW!

omputing has permeated virtually all aspects in our lives and has done so with

much greater dynamics than any other human invention. Billions of lines of
computer program code govern us. We are all affected: engineers and artists, doc-
tors and lawyers, scientists and businessmen, farmers and journalists, celebrities
and common people, politicians and their electors, leaders and followers. In bank-
ing, shopping, driving, making conversations, writing letters, designing, learning...
with - or often without - so realising, we are.

But computing does not mean only computers, computer programming or
computer engineering. It is more — and it fundamentally alters our thinking in
most human activities.

Computers do not process anything, they do not calculate, they do not com-
pute, they do not do any searching or sorting, they do not store anything. All they
do is transform one series of electric impulses into another. It is us, humans, who
interpret these impulses. Thus, we do not communicate with machines; the com-
munication is between one user (however experienced) and another (such as a pro-
grammer) who - albeit not present — left his thoughts and interpretations embed-
ded into the machine.

! The thoughts and views expressed here come from my own observations, reflections, readings and
discussions and are not necessarily those of PUNO.

181

STEFAN STANCZYK

Computing requires handling very complex forms of (mental) structures. Its
final outcomes - software systems — aim to encapsulate and to represent in a dis-
crete way (the only way contemporary computers can function) parts of the real
world. Furthermore, the transformations from the thoughts, words and actions of
the real world to a form with restricted representation may result in loss of accu-
racy and completeness — yet those are the essential attributes of the outcomes of
computing.

Computing roots are in mathematics, sciences and humanities. Mathematics
gives it a notation, formalism and rigour, sciences (physics, chemistry, biology)
make it possible to transfer the mathematical abstractions into physical existence
while humanities offer support for communication, perception of symbolism, er-
gonomic design, and certain intuitive and comfortable manners in which we use
the systems’ functionalities.

The outcomes of computing are software systems, developed to support opera-
tions of a road network, a railway system, a bank, a production company or a ser-
vice provider. The common name for the process of constructing those software
systems is software engineering.

In what sense does this variant of engineering differ from the more established
ones? The traditional manufacturing model aims at producing thousands of cop-
ies of a prototype - the prototype that was designed and tested in a (typically long)
creative and essentially hierarchical process. First, requirement specifications and
functional properties loosely define the to-be final product. Then, the product is
broken down into correlated and interfaced subproducts. The subproducts are de-
signed in exactly the same way (but perhaps with greater accuracy), i.e. by decom-
posing them into smaller pieces, and these into smaller still. Finally, the fundamen-
tal elements of the product are designed with the utmost accuracy and in every
conceivable detail.

Then, mass production essentially reverses this process for multiple copies of el-
ements that are put together to form multiple copies of subproducts, which, in turn,
form multiple copies of the final product.

This aspect of engineering - single decomposition/multiple integration — does
not appear to be particularly attractive as an analogy to software production for
multiple copies of an element (say, a routine) are not frequently needed and, in any
case, producing copies is a trivial task.

Software projects can more convincingly be equalled to large architectural
works. There, the final product is bound (or at least expected) to be rather unique,
still its elements must precisely fit the overall structure. They also must work well
when combined - similarly as in spacecraft engineering. Shuttles are not produced
in thousands (at least not yet). Nonetheless, every element of a spaceship repre-
sents a technological achievement and is a result of its designer’s ingenuity, craft
and creativity.

182

ON COMPUTER-ASSISTED SOFTWARE...

Programming - to use an old-fashioned word - is an engineering discipline. As
in any engineering, there are theoretical foundations, recorded practices, rules and
standards to be observed. However, the fundamentally different nature of the raw
material the software has to deal with makes the difference.

In civil, mechanical or electronic engineering the raw material is tangible mat-
ter. It is processed, shaped, restructured to a new form. But it is very unlikely it does
any own processing at all. In software engineering, we deal with an entirely new
kind of material — thoughts, abstract concepts and interpretations. They eventu-
ally get represented by tangible matter (such as electric impulses), but even though
- they never lose their intangibility.

Dealing with abstracts and interpretations, programming is usually incompa-
rably more complex than classical engineering. Quite logically, meta-program-
ming (to use a generic word for some elements of software engineering) is more
complex still. Typically, proving the correctness of a program (other than an il-
lustrative example) is far from being trivial and often more complex than writing
the program itself. This is specifically relevant to systems of a more applicative na-
ture, where a significant number of requirements are non-functional and difficult
to quantify.

Then, what is software engineering, after all? Traditionally perceived, software
engineering is essentially a linear process (albeit with repetitions) composed of a
number of subsequent phases, each producing a more and more detailed plan to
carry out the appropriate works in the next phase. Effectively, we have a series of
translations — from a vague, informal, imprecise and, therefore, erroneous descrip-
tion to the systematic and rigorous form required by a machine - an intolerant ob-
ject, which was produced in a similar way.

During subsequent production phases, certain tools are available — such as, for
instance, modularization, stepwise refinement, data and program correspondences
and so on. Nearly all of them stem from some sort of a structural approach impos-
ing ipso facto the hierarchical structure on the final product.

However, software engineering is not really a single discipline, as no engineer-
ing is. It is rather a combination of various, mutually permeating, disciplines that
are continuously being developed - not necessarily within one particular domain.
For instance, a successful technique in one kind of engineering may prove to be
merely effective in another.

Three domains form the skeleton of software engineering: the product itself set-
tled in a space (physical, social, business, abstract), the matter the product is made
of (so are the tools to make it), and finally the environment of comprehension, i.e.
human capabilities that make us able to understand, to analyse and to appreciate
technological phenomena. The boundaries among these domains are not sharply
defined. On the contrary, the developments occurring in one domain affect and in-
fluence the two others.

183

STEFAN STANCZYK

Compared to the other branches, software engineering is much more fragmen-
tary. There are numerous grey areas — theories not discovered, techniques not de-
veloped and, alas, experiences not recorded.

Theory aims to clarify the phenomena concerned, proving facts and disprov-
ing fallacies. In this work, abstraction and generalisation are used, for implemen-
tational details would rather obscure the analysed issues. On the other hand, prac-
tical methods concentrate on constructing objects and take logical and analytical
formulae for granted. The objects constructed are to exist in real space and, there-
fore, great attention to detail is inevitable.

Just as theories must be communicative to method constructors, the methods
themselves must communicate with the users. No method in engineering is ap-
preciated unless supported by a suitable graphical notation. Graphics carries, quite
naturally, more information and this information is a lot easier and faster to absorb.
This explains relative popularity of various techniques - flowcharts, system charts,
data flow diagrams, entity life histories, different forms of nets etc. — despite the fact
that at least some of them are not fashionable.

No matter how complex a theory is, the corresponding design method may add
a few complexities on its own. Then a particular design may assume a form that
will not be comprehended easily. If a problem description is difficult to grasp, so are
the results to obtain. It is a well-known fact that some theoretically sound methods
with great practical potential are just useless if not supported by a computer sys-
tem. The final element method is a primary example. It was a real breakthrough in
several branches of engineering — very well grounded on discrete mathematics and
theory of elasticity, clear and easy to understand, applicable to a variety of cases and
provably accurate. However, the sheer time of manual processing would have made
it entirely inapplicable.

The use of a computerised system for designing other computerised systems
appears to be inevitable and indeed computer-assisted programming is becoming
more and more widespread. Such systems maintain the entire designers’ knowl-
edge of the project, detect inconsistencies, errors and omissions and may produce
alternative solutions whenever fed with new facts, constraints or criteria.

184

ON COMPUTER-ASSISTED SOFTWARE...

STEFAN STANCZYK

INZYNIERIA OPROGRAMOWANIA WSPOMAGANA
KOMPUTEROWO - SPOJRZENIE OSOBISTE
STRESZCZENIE

rtykut prezentuje informatyke jako dziedzing nauki powstalg z potaczenia elementow

matematyki, nauk $cistych i humanistycznych. Koficowy produkt informatyki - infor-
matyczne systemy uzytkowe — przewyzszaja stopniem komplikacji wiele zadan inzynier-
skich ze wzgledu na odmienny typ przetwarzanych materiatéw, wysoki poziom abstrak-
¢ji 1 konieczno$¢ dyskretnego prezentowania obiektow i proceséw zachodzacych w ciagtlej
rzeczywisto$ci. Artykut wskazuje réwniez na podobienstwa i réznice pomiedzy inzynierig
oprogramowania a tradycyjnymi dziedzinami inzynierskimi, takimi jak budownictwo, me-
chanika czy elektronika, i na tej podstawie stawia teze o wysokiej przydatnosci systemow
komputerowych do budowy aplikacji informatycznych.

Stowa klucze: komunikacja, komputer, inzynieria komputerowa, informatyka, programo-
wanie, technika programowania, oprogramowanie

185

