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FINITE POPULATION SAMPLING:
A MODEL-DESIGN SYNTHESIS
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ABSTRACT

The paper considers a general class of Bayes estimators for estimating the
finite population mean which also achieve design consistency. Some exact
results are given where Bayes estimators agree with the Horvitz-Thompson
or ratio estimators. For a wider class of priors, asymptotic mathematical
equivalence of Bayes estimators with the above estimators is provided.

1. Introduction

There are primarily two basic approaches towards inference from sam-
ple survey data. The first, the design-based approach, finds estimators of
population quantities based on probability distributions generated by a given
selection mechanism. In contrast, a model-based approach assumes the pop-
ulation units to be generated from some superpopulation, and the assumed
superpopulation model governs any subsequent inference.

There has been a long-standing debate among survey statisticians regard-
ing which one of the two is the preferred inferential approach. The advocates
of design-based methods often criticize model-based inference regarding its
failure to guard against any possible model misspecification. On the other
hand, those advocating the use of models, question the ability of design-
based methods to provide inference with sufficient accuracy in the face of
small sample sizes, and often in the neeeded justification of large sample ap-
proximations for small or moderate samples. Fortunately, in these days, one
notices occasional reconciliation of these two approaches (see e.g. Sarndal,
1984; Prasad and Rao, 1999, among others).

While the basic conceptual disagreement between the two approaches
cannot be resolved, from an operational point of view, it is often possible
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to find an agreeement between the two. The present article is a modest at-
tempt to provide some general results showing either exact or large sample
agreement. We will illustrate our procedures with several examples.

Section 2 of this paper gives some general results showing model-based
interpretation of some of the classical design-based estimators including the
celebrated Horvitz-Thompson and ratio estimators. In the process, we revisit
the one parameter exponential family model in a slightly non-conventional
framework. We show that the said estimators plus others can be deduced as
special cases of a general expression for the posterior mean under a certain
diffuse prior. In Section 3, we continue with the exponential family model as
considered in Section 2, and establish design consistency of Bayes estimators
of the finite population mean for a wide class of priors. Here, design consis-
tency is defined in the sense of Lahiri and Mukherjee (2007), and will be
made precise in Section 3. Lahiri and Mukherjee concluded that a “subjec-
tive Bayes estimator is, in general, not design consistent”. They also provided
an adjustment to the Bayes estimator to achieve design consistency. While
not refuting the word “general” in the statement of these authors, we will
show in Section 3 that it is sometimes possible to achieve design consistency
exactly in the same sense as of Lahiri and Mukherjee (2007) for a general
class of heavy-tailed priors, without seeking any adjustment. We will also
point out in this section why the adjustment was needed in their Bayesian
framework. Some final remarks are made in Section 4.

2. Some exact results

Consider a finite polpulation with units labelled 1, . . . , N . Associated
with these units are the characteristics of interest denoted by y1, . . . , yN . A
sample s of fixed size n is drawn from the population. We will denote by y(s)
the set of yi such that i ∈ s. Similarly, we denote by s̄ the set of unsampled
population units, and by y(s̄) the set of yj such that j ∈ s̄. The objective is
to estimate the finite population mean m(y) = N−1

∑N
i=1 yi.

Under simple random sampling without replacement, the standard design
unbiased estimator of m(y) is the sample mean ȳs =

∑
i∈s yi/n. More gen-

erally, with unequal probability sampling, the most well-used estimator of
m(y) is

N−1
∑
i∈s

yi/πi,

the Horvitz-Thompson estimator, where πi denotes the probability of select-
ing unit i, i = 1, . . . , N . Clearly one must have

∑N
i=1 πi = E[

∑N
i=1 I[s3i]] =

n, I denoting the usual indicator function.
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With auxiliary information xi available with the yi, the well-known ratio
estimator of

m(y) = [(
∑
i∈s

yi)/(
∑
i∈s

xi)]
N∑
i=1

xi/N.

Many other alternative estimators of m(y) have been proposed including an
estimator of Hajek (1971), and the celebrated “generalized regression esti-
mator” of Sarndal, Swensson and Wretman (1992), but they will not be con-
sidered here.

We provide in this section model-based interpretation of some of the well-
known design-based estimators including the Horvitz-Thompson and ratio
estimators. It is convenient to begin with a version of the one paramater
exponential family model, and obtain the posterior mean of m(y) under a
diffuse prior. To this end, we prove the following theorem.

Theorem 1. Suppose yi|θ are independently distributed with pdf’s f(yi|θ) =
exp[(θyi − aiψ(θ))/σ2

i + h(yi)], i = 1, . . . , N . Here, θ is an unknown pa-
rameter, but the ai and σ2

i are known constants. Consider the prior π(θ) = c.
Then

E[m(y)|y(s)] = N−1[
∑
i∈s

yi + (
∑
i∈s

yiσ
−2
i /

∑
i∈s

aiσ
−2
i )

∑
j∈s̄

aj]. (1)

Proof. First note that solving E[(dlogf(yi|θ)/dθ)|θ] = 0 (the first Bartlett
identity), one gets E(yi|θi) = aiψ

′(θ). The posterior

π(θ|y(s)) ∝ exp[θ
∑
i∈s

yiσ
−2
i − ψ(θ)

∑
i∈s

aiσ
−2
i ].

Now, by the Bayesian analog of the first Bartlett identity, namely,
E[(dlogπ(θ|y(s))/dθ)|y(s)] = 0,

one gets
E[ψ′(θ)|y(s)] =

∑
i∈s

yiσ
−2
i /

∑
i∈s

aiσ
−2
i . (2)

Next, observe that

E[m(y)|y(s)] = N−1[
∑
i∈s

yi +
∑
j∈s̄

E(yj|y(s))]. (3)

Now, noting that for a given j ∈ s̄, E[yj|y(s)] = EE[{yj|θ, y(s)}|y(s)] =
ajE[ψ′(θ)|y(s)], one gets (1) from (2) and (3).

As mentioned earlier, some of the well-known design-based estimators
can be derived as special cases of the above result.
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Example 1. Let ai = πi and σ2
i = πi/(1 − πi), where we may recall that πi

is the selection probability of the ith unit and
∑N

i=1 πi = n. In this case from
Theorem 1, E[m(y)|y(s)] simplifies to

E[m(y)|y(s)] = N−1[
∑
i∈s

yi+{
∑
i∈s

((1−πi)/πi)yi/
∑
i∈s

(1−πi)}
∑
j∈s̄

πj. (4)

Since
∑

j∈s̄ πj =
∑N

i=1 πi −
∑

i∈s πi = n −
∑

i∈s πi =
∑

i∈s(1 − πi),
from (4), one gets E[m(y)|y(s)] = N−1

∑
i∈s yi/πi, which is the celebrated

Horvitz-Thompson estimator.

Remark 1. Little (2004) gave an asymptotic model-based interpretation of
the Horvitz-Thompson estimator. Ghosh and Sinha (1989) provided an exact
model-based justification, but restricted only to the normal model. The result
is established now under broader generality, and the present result is believed
to be new.

Example 2. Suppose now ai = xi and σ2
i = 1. Then, from Theorem 1

E[m(y)|y(s)] = N−1[
∑
i∈s

yi + (
∑
i∈s

yi/
∑
i∈s

xi)
∑
j∈s̄

xj] =

= (
∑
i∈s

yi/
∑
i∈s

xi)
N∑
i=1

xi/N,

the well-known ratio estimator.

Example 3. Suppose now ai = σ2
i = xi. Then one gets E[m(y)|y(s)] =

N−1
∑

i∈s yi + n−1(
∑

i∈s yi/xi)
∑

j∈s̄ xj , an example originally considered
in Royall (1970). Basu (1971) gave a very intuitive justification of this esti-
mator.

Remark 2. With the available auxiliary information xi, various choices ai =
h(xi) and σ2

i = v(xi) will produce different model-based estimators of the
finite population mean which could potentially be useful also in design-based
analysis.

Remark 3. Although phrased in a Bayesian framework, one can think of
an alternate model-based interpretation of the result of Theorem 1. To see
this, we may note that E(yi|θ) = aiψ

′(θ) and V (yi|θ) = aiσ
−2
i ψ′′(θ). The

latter follows from the second Bartlett identity E[{dlogf(yi|θ)/dθ)}2|θ] =
E[(−d2logf(yi|θ)/dθ2)|θ].
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Then, under the standard quasi-likelihood approach, one obtains the unbiased
estimating equation

∑
i∈s{yi −E(yi|θi)}/V (yi|θi) = 0, which is equivalent

to E[
∑

i∈s{yi − aiψ′(θ)}2/(aiσ
−2
i ) = 0. This leads to the same estimator of

ψ′(θ) as given in Theorem 1.

Remark 4. The special case ai = 1 for all i and σ2
i = σ2 for all i is of

interest. In this case E[m(y)|y(s)] simplifies to N−1[
∑

i∈s yi + n−1(N −
n)

∑
i∈s yi] = n−1

∑
i∈s yi, the standard design-based estimator of the finite

population mean under simple random sampling without replacement. We
will revisit this point again in Section 3.

3. Some asymptotic results

The exact results of the previous section require a flat prior for θ. How-
ever, design consistency of model-based estimators in an asymptotic sense
can often be justified for a wide class of priors. We will show in this sec-
tion how mathematical limits of certain Bayes estimators result in standard
design-based estimators. We use the term “mathematical limit” in the sense
of Lahiri and Mukherjee (2007), where the limiting operation is performed
in the sense of ordinary calculus, keeping the observations fixed. The latter
came to the conclusion that as the sample size goes to infinity, mathemati-
cal limits of subjective Bayes estimators of the finite population mean based
on the one parameter exponential superpopulation family do not converge
in general to the Horvitz-Thompson estimator. They also proposed an ad-
justment to their subjective Bayes estimators to achieve design consistency.
What we show is that a slightly modified version of the one parameter expo-
nential superpopulation family as considered in (1) can indeed lead to design
consistent Bayes estimators for a wide class of priors without requiring any
adjustment. We will also point out why Lahiri and Mukherjee (2007) needed
an adjustment to their Bayes estimators to achieve design consistency.

To this end, we first prove the following theorem. We denote the expres-
sion given in the right hand side of (1) as r.

Theorem 2. Consider the one-parameter exponential family as given in The-
orem 1. Consider priors π(θ) of θ which are differentiable in θ and satisfy

N−1E[π′(θ)/π(θ)|y(s)]
∑
j∈s̄

aj/
∑
i∈s

aiσ
−2
i → 0 as n→∞. (5)
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Then, E[m(y)|y(s)]− r → 0 as n→∞.

Proof. Once again we use the fact that E[dlogπ(θ|y(s))/dθ|y(s)] = 0. In the
present set up, this fact leads to the equation∑

i∈s

yiσ
−2
i − E[ψ′(θ)|y(s)]

∑
i∈s

aiσ
−2
i + E[π′(θ)/π(θ)|y(s)] = 0,

solving which we get

E[ψ′(θ)|y(s)] =
∑
i∈s

yiσ
−2
i /

∑
i∈s

aiσ
−2
i + E[π′(θ)/π(θ)|y(s)]/

∑
i∈s

aiσ
−2
i .

The result follows now from Theorem 1 and (5).

While (5) seems somewhat artificial and complicated, it does lead to
some simple readily verifiable conditions in some special cases. We begin
with the situation where ai = πi and σ2

i = πi/(1 − πi), i = 1, . . . , N and∑N
i=1 πi = n. Then, r simplifies to the Horvitz-Thompson estimator. In this

scenario,
∑

j∈s̄ aj/
∑

i∈s aiσ
−2
i = 1 so that (5) simplifies to the condition

N−1E[π′(θ)/π(θ)|y(s)] → 0 as n → ∞. For instance, for a prior π(θ) for
which |π′(θ)/π(θ)| is bounded uniformly in θ, this condition holds trivially
since n→∞ implies N →∞.

The boundedness of |π′(θ)/π(θ)| is not all that restrictive either. It holds
for many heavy-tailed priors. For example, if θ|σ2 ∼ N(0, σ2) and σ2 ∼
inverse gamma(β/2, α/2), that is π(σ2) ∝ (σ2)−β/2−1exp(−α/2), α > 0
and β > 0, then θ has the marginal prior π(θ) ∝ (θ2 + α)−(β+1)/2. This
is immediately recognized as a t-density. In this case |π′(θ)/π(θ)| = (β +
1)|θ|/(θ2 + α) ≤ (1/2)(β + 1)/α1/2 uniformly in θ. A second example is
the logistic prior π(θ) = exp(θ)/[1 + exp(θ)]2 which leads to π′(θ)/π(θ) =
[1− exp(θ)]/[1 + exp(θ)]. Then, |π′(θ)/π(θ)| ≤ 1 uniformly in θ.

A similar phenomenon occurs for ratio estimators. Here ai = xi and σ2
i =

1 for all i. Then,
∑

j∈s̄ aj/
∑

i∈s aiσ
−2
i =

∑
j∈s̄ xj/

∑
i∈s xi. If now C1 ≤

xi ≤ C2 for all i = 1, . . . , N , then
∑

j∈s̄ xj/
∑

i∈s xi ≤ (N − n)C2/(nC1).
Then, (5) reduces to the simple condition n−1E[π′(θ)/π(θ)|y(s)] → 0 as
n→∞. Again, for the t and logistic priors considered in the previous para-
graph, (5) trivially holds.

A standard normal prior for θ leads to π′(θ)/π(θ) = θ and in this case
(5) may not hold true because of the unboundedness of θ. Accordingly, the
subjective Bayes estimator of Ericson (1969) may not achieve design robust-
ness except under very special circumstances, for example, under simple ran-
dom sampling with replacement. But even under the normal superpopulation



STATISTICS IN TRANSITION new series, Summer 2012 241

model, which is a special case of (1), a heavy-tailed prior such as the t or
logistic can lead to design consistency of the Bayes estimator of the finite
population mean.

It is important to point out why Lahiri and Mukherjee (2007) needed an
adjustment to their subjective Bayes estimator. They introduced a new ran-
dom variable Tn to this end. If one examines carefully the pdf of Tn given in
their (2.4), then it is clear that it is equivalent to the posterior pdf given in our
Section 2 with the flat prior π(θ) = c, ai = 1 and σ2

i = σ2 (φ in their nota-
tion) for all i. As pointed out in our Remark 4, one then has E[ψ′(Tn)] = ȳs.
This is an exact relation. Obviously, ȳs is not necessarily equal to a weighted
estimator, say, ȳw unless the design is self weighted, which was noted also
by Lahiri and Mukherjee. On the other hand, as evidenced in our Section 2,
what one needs is a suitable choice of the ai and σ2

i to agree with the Horvitz-
Thompson or the ratio estimator.

4. Summary and conclusion

The paper derives Bayes estimators under the one-parameter exponen-
tial family superpopulation model, and demonstrates design consistency of
these estimators under certain conditions. It is needless to say that not all
model-based estimators can achieve design consistency. Many authors have
shown design consistency of certain model-based estimators in a probabilistic
sense. What we have shown here is that often it is possible to achieve design
consistency of Bayes estimators in a pure mathematical way, holding the ob-
servations as fixed numbers. A possible extension of our work is to consider
the multiparameter situation, and show design consistency of model-based
estimators, for example, in the regression model, by considering mathemati-
cal rather than probabilistic limits.
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