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ABSTRACT 

Classical canonical correlation analysis seeks the associations between two data 
sets, i.e. it searches for linear combinations of the original variables having 
maximal correlation. Our task is to maximize this correlation. This problem is 
equivalent to solving the generalized eigenvalue problem. The maximal 
correlation coefficient (being a solution of this problem) is the first canonical 
correlation coefficient. In this paper we construct nonlinear canonical correlation 
analysis in reproducing kernel Hilbert spaces. The new kernel generalized 
eigenvalue problem always has the solution equal to one, and this is a typical case 
of over-fitting. We present methods to solve this problem and compare the results 
obtained by classical and kernel canonical correlation analysis. 

Key words: Canonical correlation analysis, generalized eigenvalue problem, 
reproducing kernel Hilbert space. 

1. Introduction 

The classical tool for studying the association between a dependent variable  
and a set of  explanatory variables  is multiple regression. Often 
we are interested in a more complicated interaction, i.e. an interaction between a 
set of  dependent variables   and a set of  explanatory variables 

. This method was proposed by Hotelling (1936), and is referred 
to in the literature as canonical correlation analysis. 

Our task is to find the strength of association between two vectors  and . 
For this purpose we construct new variables  and , being a linear combination 
of the original vectors  and , i.e.  and , where 

. The variables  and  obtained in this way are real one-
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dimensional variables ( , ). The dependence between  and  can be 
expressed as the classical correlation coefficient  between  and . 

2. Classical Canonical Correlation Analysis (CCA) 

Suppose  and  are two 
centred (standardized) N-element data sets, i.e.  and 

, , for . 
The classical task of canonical correlation analysis (CCA) is to find the linear 

combinations of original vectors  and  maximizing , i.e.: 

, 

where  and , where . Obviously: 

 

, 
,  
. 

 
Because  and  are centred, . Moreover, it can be 

assumed without loss of generality that . Consequently we 
obtain  Now we want to maximize , i.e.: 

 
To maximize  we construct a Lagrangian on  and : 

                 (1) 

where  and 
  and  ,  are Lagrange multipliers. 

Taking the derivates of the components of vectors  and  and equating to 
zero we obtain: 

                                                       (2) 

                                                      (3) 

where  . 
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Because , we arrive at . 
Therefore (2) and (3) are equivalent respectively to (4) and (5): 

                                                               (4) 

                                                                (5) 

Using a matrix representation, equations (4) and (5) are equivalent to: 

                                                                 (6) 

where  

. 

 
Equation (6) is a classical case of the generalized eigenvalue problem. The 

matrix  is non-singular  and can be presented as the classical eigenvalue 
problem: 

                                                             (7) 

where .   
 
The solutions  of equation (7)  determine the i-th 

canonical correlation coefficient, and the corresponding vector  the i-th pair 
of canonical variables . 

3. Introduction to reproducing kernel Hilbert spaces (RKHS) 

We introduce some facts about reproducing kernel Hilbert spaces (RKHS) 
which will be used in our analysis (Preda (2006)). Let  be a set  and  be 
a Hilbert space of functions on . Denote by the inner product of . A 
bivariate real-valued function  on  is said to be a reproducing kernel for  if: 
(RK1)   
(RK2) (reproducing property)   

If  admits an reproducing kernel , then  has the following properties 
(Aronszajn, 1950): 
(K1)  is the unique reproducing kernel for . 
(K2)  is symmetric and non-negative definite. 
(K3) Elements of the form 

are dense in 
. 
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In view of (K3), if  is a symmetric and non-negative definite function, one 
can construct a Hilbert space  which is the completion of all functions on  of 
the form  under the inner product: 

 
Thus,  is an RKHS with reproducing kernel  and we have the well 

known result (Aronszajn, 1950): 

Moore–Aronszajn Theorem. To every non-negative definite function  on  
there is a corresponding unique RKHS  of real-valued functions on and vice 
versa. 

Examples of reproducing kernels: 

Gaussian kernel: . 

Polynomial kernel: . 
 
Theorem. Let  and  be the kernel matrix for non-centred data. Then the 
kernel matrix   for centred data is expressed by the formula: 

 
where   and  is N-dimensional vector consisting of one. 

4. Kernel Canonical Correlation Analysis (KCCA) 

Let space  be mapped to a reproducing kernel Hilbert space: 
 and space   to a reproducing 

kernel Hilbert space : . We 
formulate a new CCA task on the sets  and , i.e. on elements 

 and ,  for , assuming  and  
are centred. Then each of the vectors  and  is in the subspaces stretched 
respectively on  and on : 

 
 

 
 

The kernelized problem of CCA has the same form (KCCA): 
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where 

 

 
To maximize  we construct analogously to CCA a new Lagrangian on 

 and : 

  

  

       (8) 
 
Using the Moore-Aronszajn theorem and kernel trick, i.e. 

 and , (8) can be 
presented as: 

 
                (9) 
 
where  and  are kernel matrices and where 

 and . 
 
Taking the derivates of the components of vectors  and  and equating to 

zero we obtain: 

                                               (10) 

                                               (11) 

where  . 
 

Analogously, we arrive at . Therefore, (10) and (11) 
are equivalent to (12) and (13) respectively: 

                                                          (12) 

                                                         (13) 
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Using a matrix representation, equations (12) and (13) are equivalent to: 

                                                        (14) 

where  

. 

 
Equation (14) is the generalized eigenvalue problem and could again be 

presented as the classical eigenvalue problem: 

                                                         (15) 

where . The matrix  is non-negative determined and can include 
singularity values. The generalized Moore–Penrose pseudoinverse of the matrix is 
ambiguous.  

In order to solve this problem we first apply the idea used in ridge 
regression, namely regularization of the matrix , i.e. 
                                                               (16) 
where ; it is enough to take .  

Consequently, the matrix  has the form: 
                                                        (17) 

A second concept for solving this problem is the idea of using SVD 
decomposition of the matrix , i.e. 

                                                                 (18) 

where  is the orthogonal ( ) matrix and  is the diagonal matrix of 
degree , where  is the number of eigen-values of matrix  greater then .  

As a result, we obtain the matrix : 
                                      (19) 

The solutions  of equation (15)  determine the i-th 
kernel canonical correlation coefficient, and the corresponding vector  the i-
th pair of kernel canonical variables . 

5. Quasi Kernel Canonical Correlation Analysis (Q-KCCA) 

In this case let only the space  be mapped to a reproducing kernel Hilbert 
space:  and  (Zheng et al. (2006)). We 
present a concatenation of the methods proposed in section 3 and 4. 
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Using the Moore-Aronszajn theorem and kernel trick again, i.e. 

, we obtain: 

                      (20) 

Taking the derivates of the components of vectors  and  and equating to 
zero we obtain: 

                                       (21) 

                                       (22) 

where  . 

Therefore, (21) and (22) are equivalent to (23) and (24) respectively: 

                                                            (23) 

                                                          (24) 
Using a matrix representation, equations (23) and (24) are equivalent to: 

                                                            (25) 
where  

 
Again, we can transform problem (25) again into the classical eigenvalue 

problem: 
                                                             (26) 

Using regularization of the matrix  we obtain: 

                                      (27) 

Analogously, using SVD decomposition of the matrix  we obtain 

                                    (28) 
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6. Example - Car Marks Data Set 

These data come from the book Applied Multivariate Statistical Analysis by 
Wolfgang Härdle and Léopold Simar (2007). They are averaged marks for 24 car 
types from a sample of 40 persons. The marks range from 1 (very good) to 6 (very 
bad), on the pattern of German school marks. The variables are  Economy, 

 Service,   Non-depreciation of value,   Price (mark 1 for very cheap 
cars),   Design,  Sporty car,   Safety,   Easy handling. The exact 
description of the data set is found in the book in section B.7 Car Marks (p. 434-
435). In particular, we would like to investigate the relation between the two 
variables representing non-depreciation of value and price of the car, and all other 
variables, i.e.  and . All variables are 
standardized. 

In the classical case of CCA we obtain two non-zero correlation coefficients 
 and . For the largest correlation coefficient  we 

obtain vectors  and 
 which 

correspond to the canonical variables , where:   
 
 

A projection (CCA) into the coordinate system of the canonical variables 
corresponding to the canonical coefficients  is shown below: 
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In the kernel case (KCCA) we can use the polynomial kernel 

. We obtain 26 non-zero correlation coefficients. We 
present only the six largest:   

 
For the largest correlation coefficient  we obtain vectors 

 and  which 
correspond to the canonical variables , where:   
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A projection (KCCA) into the coordinate system of the canonical variables 
corresponding to the canonical coefficients  is shown below: 
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Because in this image the elements in the upper right corner are not clearly 
visible, we present below a magnification of the upper part: 
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Finally, in the quasi kernel case (Q-KCCA) we obtain two non-zero 

correlation coefficients and . For the largest 
correlation coefficient  we obtain vectors  
and  which correspond to the canonical variables 

, where:   
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A projection (Q-KCCA) into the coordinate system of the canonical variables 
corresponding to the canonical coefficients  is shown below: 
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7. Conclusions 

Kernel methods compared to the classical methods give a correlation 
coefficient close to 1, i.e. two data sets can be presented as 100% correlated data 
sets. In the discussed example it can be seen that the largest correlation 
coefficients for Q-KCCA and KCCA are similar (respectively  and 

). However, intuitively the projection into the coordinate system of the 
canonical variables (corresponding to the largest canonical coefficients) in the 
case of Q-KCCA is more similar to CCA then KCCA. Therefore, Q-KCCA can 
be recommended as one of the best methods in nonlinear canonical correlation 
analysis.  
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