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This study proposes a methodology to obtain an efficient solution for a programming model 
which is multi-objective quadratic fractional with pentagonal fuzzy numbers as coefficients in all the 
objective functions and constraints. The proposed approach consists of three stages. In the first stage, 
defuzzification of the coefficients is carried out using the mean method of α-cut. Then, in the second 
stage, a crisp multi-objective quadratic fractional programming model (MOQFP) is constructed to ob-
tain a non-fractional model based on an iterative parametric approach. In the final stage, this multi- 
-objective non-fractional model is transformed to obtain a model with a single objective by applying 
the ε-constraint method. This final model is then solved to get desired solution. Also, an algorithm 
and flowchart expressing the methodology are given to present a clear picture of the approach. Final-
ly, a numerical example illustrating the complete approach is given. 

Keywords: multi-objective quadratic fractional programming model (MOQFPM), pentagonal fuzzy number 
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1. Introduction 

Multi-objective quadratic fractional programming (MOQFP) is a highly successful 
decision-making process used for analysing practical problems where the best deci-
sions must be made. Specific coefficients must be chosen when developing such pro-
gramming models. In practice, however, these specific values are rarely known, and 
an approximation to these coefficients values can be made. Most of the time, the in-
formation available is uncertain and takes the form of fuzzy numbers (triangular, trap-
ezoidal, pentagonal, pentagonal neutrosophic, intutionistic, or interval). Because such 
programming models have multiple quadratic objective functions that are fractional in 
nature, there is no single solution that meets all of the objectives at the same time. 
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Thus, Pareto [46] introduced the concept of Pareto optimality, where a Pareto solution 
is one that satisfies all objectives at the same time. 

Several approaches have been proposed by various authors over the last few dec-
ades, and much work has been done in the field of fractional programming. Charnes 
and Cooper [2] study linear fractional problems and devise a method for converting 
them to linear programming problems. Then, for dealing with linear programming 
problems, Martos and Whinston [9] and Jagannathan [28] introduce the parametric 
approach. Dinkelbach [47] later extends their approach to quadratic fractional prob-
lems and obtains optimal solutions using Newton’s method in 1968. Several other authors 
expand this approach and create new techniques for finding optimal solutions. Almogy 
and Levin [48] use a parametric approach to solve fractional problems with a sum of 
fractional functions as the goal. Then, Falk and Palocsay [14] point out the shortcom-
ings of their method and use the parametric approach to solve the sum and product of 
the linear fractional functions. Tantawy [40] also proposes a method for solving frac-
tional problems based on the gradient method. Tammer et al. [16] employ a parametric 
approach to solve MOQFP problems by determining parameters. Heesterman [6] in-
vestigates quadratic problems using parametric methods as well. Salahi and Fallahi 
[21] also use a parametric approach to solve fractional problems. For interval coeffi-
cient fractional programming, Borza et al. [18] resort to a parametric approach. Emam 
[24, 25] also proposes using the ε-constraint approach to solve multi-objective integer 
bi-level QFP problems.  

For fractional problems, Ojha and Biswal [5] suggest the ε-constraint method. For lin-
ear fractional problems, Nayak and Ojha [37, 38] also use parametric and ε-constraint 
methods. Arora and Gupta [26] apply the branch and bound technique to solve linear frac-
tional problems. Valipour et al. [12] investigated a method for solving linear fractional 
problems by taking the distance between two solutions into account. Ehrgott et al. [19] and 
Kenneth Chircop et al. [15] make use of the ε-constraint method in a different way to 
solve multi-objective problems. Emmerich and Deutz [22] propose evolutionary methods 
for dealing with similar issues. Nikas et al. [4] offer the AUGMECON-R method for solv-
ing MOLP problems precisely. Goyal et al. [23, 42–45] also propose a method for 
solving multi-objective quadratic fractional models efficiently, using a parametric 
approach and the ε-constraint method. Because of flaws in structural and technical 
procedures, there is ambiguity and uncertainty in parameter evaluation. Zadeh et al. 
[17] are the first to address this issue. Later on, many researchers investigated this 
area, using various types of fuzzy numbers. Adhami et al. [7] investigate the problem 
of supplier selection in a fuzzy environment. Behera et al. [11] work with LPP with 
triangular fuzzy numbers. Farnam and Darehmiraki [20] deal with LFP under a fuzzy 
environment. Khalifa et al. [13] and Veermani et al. [10] propose working with neu-
trosophic numbers in QFP and transportation problems. The concept of fuzzy numbers 
has been expanded to include pentagonal fuzzy numbers (PFN), PFN-neutrosophic 
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numbers, Pythagorean fuzzy numbers, and a variety of others. Pathinathan and Ponnivala-
van [41] use the concept of PFN in their paper in 2014. Das et al. [29–36] work with linear 
fractional problems with fuzzy coefficients such as triangular, pentagonal, and neutrosoph-
ic coefficients. Following that, many researchers [3, 8, 27, 39] worked with PFN and pro-
vided their types, properties, and ranking techniques. In 2019, Chakraborty et al. [1] de-
scribe various forms of PFN and compare ranking techniques. 

Motivation. The literature review shows that there is a lot of work going on in the 
field of QFP, but the research gap with the use of pentagonal fuzzy numbers and their 
defuzzification process needs to be more thoroughly explored because most of the work is 
done with the help of FGP using the α-cut method. Thus, the authors propose this work in 
QFP with the mean method of α-cut for dealing with pentagonal coefficients, but here 
a different approach of parametric vectors in combination with the ε-constraint method is 
used, which is efficient in finding the Pareto optimal set of solutions. Based on the 
literature, it is clear that the majority of the work done to date has been in the field of linear 
fractional problems and with only one objective function. Furthermore, to the best of the 
authors’ knowledge, quadratic fractional problems with pentagonal fuzzy coefficients have 
not yet been addressed using a parametric approach coupled with the ε-constraint method. 
As a result, the authors attempt to combine both approaches to optimise MOQFP models 
having pentagonal fuzzy coefficients. 

In this paper, we propose an approach for obtaining an optimal solution to a multi- 
-objective quadratic fractional programming (MOQFP) model with pentagonal fuzzy 
numbers as coefficients in the objectives as well as constraints. The proposed approach 
initially converts the model with fuzzy coefficients into the crisp one with the help of the 
defuzzification technique, using the mean method of α-cut, and then the modified model is 
subjected to a parametric approach to get a non-fractional model by subjecting each frac-
tional function equal to a vector of parameters, and this is further changed to a single-
objective model, using the ε-constraint method. Here, one objective with the highest 
priority (or least Termination constant) is considered an objective function, and others are 
converted into constraints. This is all decided by the decision maker (DM). 

Managerial insights. The proposed work is divided into several sections, with Sec-
tion 2 providing basic definitions and related properties, Section 3 presenting the pro-
posed model, and various approaches used in the solution procedure. Section 4 gives 
results and theorems on which the study is based as well as deals with ε-constraint 
method which helps to tackle multiple objectives problem. Section 5 then describes 
the complete methodology and solution procedure with the proposed approach then 
dealing with termination criteria and few assumptions considered in the solution pro-
cedure. Section 6 contains the algorithm for the solution procedure, the flowchart for 
the algorithm, and compares the proposed work to the FGP and clearly shows all of 
the proposed work with the help of an example. It also presents the usefulness of the pro-
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posing PFN over trapezoidal fuzzy numbers and depicts a practical application of the 
model and proposed work. Any organisation with multiple objectives of varying natures 
can benefit from the proposed work because it provides efficient solutions, and it is up to 
the DMs to choose any one of them as the preferred solution as all the obtained solutions 
are very close to each other. 

2. Notations and preliminaries 

Rn  – space of n-dimensional real vectors 
xT – transpose of 𝑥 
α (T) – vector of parameters, T represents iteration number 
tj – termination constants 
S – set of constraints 

( , , , , ),T a b c d e a b c d e= ≤ ≤ ≤ ≤   – the pentagonal fuzzy number (PFN), is a num-
ber of the form ( , , , , ; ), ; 0 1T a b c d e k a b c d e k= ≤ ≤ ≤ ≤ < ≤  with a linear member-
ship function stated as follows: 
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is known as the pentagonal fuzzy number. PFN is shown in Fig. 1. 

 
Fig. 1. Pentagonal fuzzy number 
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α-cut. α-level set or α-cut for PFN is given as 
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Pentagonal fuzzy matrix. A matrix [ ]m mM ×=  in which every entry is a pentag-
onal fuzzy number is called a pentagonal fuzzy matrix. Its basic properties are as fol-
lows. Consider 1 2 3 4 5 1( , , , , ; )A a a a a a k=  and 1 2 3 4 5 2( , , , , ; )B b b b b b k=  

1 1 2 2 3 3 4 4 5 5 1 2( , , , , ; ), min{ , }A B a b a b a b a b a b k k k k+ = + + + + + =   

1 5 2 4 3 3 4 2 5 1 1 2( , , , , ; ); min{ , }A B a b a b a b a b a b k k k k− = − − − − − =   

1 2 3 4 5( , , , , ; ), 0rA ra ra ra ra ra k r= >
5 4 3 2 1( , , , , ; ), 0ra ra ra ra ra k r= < for a real 

number a, we have, ( , , , , ).a a a a a a=  

Efficient solution. A point u ∈ S is said to be an efficient solution if there is no 
other point v ∈ S such that Hj(v) ≤ Hj(u) for all j and Hj(v) < Hj(u) for at least one j. 

 3. Multi-objective quadratic fractional programming model 
with pentagonal fuzzy numbers (MOQFPM-PFN) 

MOQFPM-PFN is designed to find an efficient solution to all those practical prob-
lems where the objectives are quadratic and clashing yet interrelated. In most real-life 
situations, parameters are not certain and hence fuzziness plays its role over here. So, 
PFN are considered as coefficients in the objectives as well as constraints. MOQFPM- 
-PFN is given as follows: 

{ }1 2 3min ( ) ( ), ( ), ( ), ..., ( )1: rM H x H x H x H x H x=      

such that  



 V. GOYAL et al. 54

1| 0, 0 , 1
2

n T
j j jx S x R x A x B x c x j k

 ≤ 
  

∈ = ∈ + + ≥ ≥ ≤ ≤  
  =  

    

where 

 
1 1 1

1

2
2 2 2

1
( ) 2( ) , 1 1( )

2

T
i i i

i
i

Ti
i i i

x D x C x dH xH x i r
H x x D x C x d

+ +
= ≤ ≤ =

+ +


 

 

where 1 2, [ ] ,i i n nD D ×= 
1 2 1 1, [ ] , [ ] , [ ]i i n j k n j kC C A B× × ×= = =      are all pentagonal fuzzy 

matrices and 1 2, ,i i jd d c   are PFN. 

Defuzzification of PFN with mean method of α-cut. There are several techniques of 
defuzzification of pentagonal fuzzy numbers but the authors worked with the mean 
method of α-cut of a PFN. The left and right α-cuts of PFN are as follows:  
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Since there are two left and two right values of the α-cuts of PFN as shown above, 
and the contribution of each of them is to be considered, thus the mean of the left and 
right α-cuts of PFN is taken to have the equal contribution from all of them. This 
method is similar to the α-cut method which is used in the case of triangular or trape-
zoidal fuzzy coefficients. The mean method used for the defuzzification of PFN is 
given as follows: 
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Thus, with the help of this method, our MOQFPM-PFN is converted into a crisp 
or deterministic MOQFPM which is easy to handle. 

Parametric approach for fractional programming. In the model considered to 
be optimised, the objectives are not so easy to tackle as they are in the form of a 
fraction. To handle the fractional nature of objectives, the authors used the parametric 
approach as suggested by Dinkelbach [47]. In this, a vector of parameters αj is 
allocated to every objective function Hj(x), and is computed iteratively at each initial 
approximated value of the objective function. Thus, the value of the parameter αj 
approaches very closely to the best optimal value of the objective function as the 
iterations proceed. The computation of αj is very easy to obtain and thus this parametric 
aproach tackles the fractional nature of objectives very easily. With the help of this, 
a fractional model is reconstructed to obtain a non-fractional parametric model given 
as follows: 

( ) ( )1 22 :  min ( ), ( ), ..., ( )rM H x H x H x H x=  M2: 
Take each ( )j jH x α=  

1

2
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( )

j
j
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Consider 1 2( ) ( ) ( )j j j jP x H x H xα= −  
The fractional model is reduced to the following non-fractional model. 

M3: min ( ) min{ ( )}jx S j
H x P x

∈
= where each ( )jP x  is a parametric non-fractional 

function. 
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4. Results and theorems 

Result 1 [47]. A point u ∈ S is an optimal solution of M2 iff 

 { }1 2min ( ) ( ) 0j j jx S
H x H xα

∈
′− =  

where 1

2

( )
( )

j
j

j

H u
H u

α′ =  

Result 2 [47]. A point u ∈ S is an optimal solution of M3 if for all x ∈ S, 
1 2( ) ( ) 0j j jH x H xα ′− =  for every j or 1 2( ) ( ) 0j j jH x H xα ′−  for at least one j. 

Theorem 1. A point u ∈ S is an efficient solution of M2 if it is an efficient 
solution of M3. 

Proof. Let u ∈ S is an efficient solution of M2. 
Let 

 1 2( ) ( ) ( ), 1, 2, ...,j j j jP x H x H x j rα ′= − =   

Claim: u ∈ S is an efficient solution of M3. 
Let us suppose that u is an inefficient solution of M3. 
So, there must exist some v ∈ S such that ( ) ( )  with ( ) ( )j j j jP v P u j P v P u≤ ∀ <  for at 

least one j, i.e.,  

1 2 1 2( ) ( ) ( ) ( )j j j j j jH v H v H u H u jα α′ ′− ≤ − ∀  

and  

1 2 1 2( ) ( ) ( ) ( )j j j j j jH v H v H u H uα α′ ′− −  

for at least one j, i.e.,  

1 2( ) ( ) 0j j jH v H v jα ′− ≤ ∀  and 1 2( ) ( ) 0j j jH v H vα ′− <  

for at least one j. Thus 
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This is a contradiction to the fact that u is an efficient solution for M2. Thus, u is 
an efficient solution for model M3. 

 
Conversely, let u be an efficient solution to M3. 
Claim: u is an efficient solution to M2. 
Let us suppose that u ∈ S is an inefficient solution of M2. So, there must exist some 

point v S∈ such that ( ) ( )j jH v H u j≤ ∀  and ( ) ( )j jH v H u<  for at least one j, i.e., 
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 ( ) 0  and ( ) 0j jP v j P v≤ ∀ <  for at least one j 
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Thus 

( ) ( )j jP v P u j≤ ∀  and ( ) ( )j jP v P u< for at least one j 

This is a contradiction to the fact that u is an efficient solution for M3. Thus, u is 
an efficient solution for M2. 𝛆-Constraint method. This is a method that helps in getting a single objective 
model from a multi-objective model as it becomes difficult to handle multiple objec-
tives at a time. So, instead of solving all the functions as objectives, one objective is 
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optimised to its best possible level and the other objectives are taken as constraints but 
they are also optimised to their possible acceptable levels. The ε-constraint method is 
as follows: 

M4: min ( ), 1mP x m r≤ ≤ subjected to ( )j jP x ε≤ for all 1 ,j r j m≤ ≤ ≠ and x ∈ S, 

where [ , ]l u
j j jε ε ε∈  and l

jε  and u
jε  are the minimal and maximal values of ( ).jP x  

Thus, we solve this problem by substituting different values of .jε  The obtained opti-
mal solutions corresponding to each value of jε  are very close to each other and all 
are the efficient solutions. Thus, it is completely the discretion of the DM who can 
choose any one of them as the preferred solution, depending upon its relative work. 

5. Methodology 

Model M1. { }1 2 3min ( ) ( ), ( ), ( ), ..., ( )rH x H x H x H x H x=     subject to 

 1| 0, 0 ,1
2

n T
j j jx S x R x A x B x c x j k

 ≤ 
  

∈ = ∈ + + ≥ ≥ ≤ ≤  
  =  

    

This model contains PFN as coefficients in the objectives as well as constraints. 
Thus, firstly we convert this fuzzy coefficient model into a crisp or deterministic one 
(having real coefficients), using the defuzzification by mean method of α-cut, as de-
fined above in Section 4. 

Model M2. The crisp model obtained is given as: 
{ }1 2 3min ( ) ( ), ( ), ( ), ..., ( )rH x H x H x H x H x= subject to .x S∈  Now, this is solved 

with the approach proposed by [42– 45]. Let us assume that each 
( )( ) ,1 ,t

j jH x j rα= ≤ ≤  t being the iteration number. 

Consider ( ) ( ) ( ) ( )
1 2( , , ..., ),t t t t

rα α α α=  the parametric vector corresponding to H(x).  
Consider ( ) ( )

1 2( ) ( ) ( ),1 .t t
j j j jP H x H x j rα α= − ≤ ≤  

In this way, the above model M2 is reduced to the model M3 as shown below. 

Model M3. ( )min ( ) min ( ) min ( )t
jH x H x P α= =  subject to .x S∈  This is still 

a multi-objective model which is difficult to tackle. So, we implement an ε-constraint 
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method which optimizes one objective, and the remaining objectives are taken as con-
straints. Thus, the new model M3 is shown as a next model. 

Model M4. ( ) ( )
1 2min ( ) ( ) ( )t t

m m m mP H x H xα α= −  subject to x S∈ and ( )( ) ,t
j jP α ε≤

1 , .j r j m≤ ≤ ≠ Suppose, Xj are the individual solutions of each ( )jH x  when 
subjected to .x S∈  So, we construct Table 1 for the values of ( ), 1j jH X j r≤ ≤ . 

Table 1. Pay-off table for ( )j jH X  

 𝑋௝   1( )jH X  2 ( )jH X  3( )jH X   ...  ( )r jH X  𝑋ଵ   1 1( )H X  2 1( )H X  3 1( )H X   ... 1( )rH X  𝑋ଶ   1 2( )H X   2 2( )H X   3 2( )H X   ... 2( )rH X  
             

 rX   1( )rH X  2( )rH X  3( )rH X   ... ( )r rH X  

 
Next, we define L

jε  and U
jε  as L

jε = min ( ),1 }j jP X j r≤ ≤  

max{ ( ),1 }U
j j jP X j rε = ≤ ≤  

Then, the initial solution 𝑋(଴) for model M4 is calculated as (0)

1

r

j j
j

X w X
=

=  such 

that summation of all the weights is a unity.  
Consider a parametric vector ( )tα  for t = 1 as 

( )(1) (1) (1) (1)
1 2, , ..., rα α α α=  = ( )(0) (0) (0)

1 2( ), ( ), ..., ( )rH X H X H X  

After substituting the value of α (1) in each ( )( ),t
jP α  we proceed with our proposed 

approach and test the termination conditions. If conditions are not satisfied at the end, 
we refine our termination constants and proceed again with the approach. 

Termination constants and conditions. Termination constants (Tj) are the tolerances 
corresponding to the objectives ( )jH x  and acceptable to the DM. These Tj are 
decided by the DM by taking into consideration the priorities of the objectives and are 
taken very close to zero. Also, the termination conditions for the process to stop are 
given as ( )( ) ,1 .t

j jP T j rα ≤ ≤ ≤  
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Assumptions 
• Each solution of objective functions is assigned with equal weightage to obtain 

the initial solution to the model. 
• DM determines the termination constants (nearer to zero) for each objective 

function. 

• The initial solution to the model is obtained as: (0)

1
, 0

r

j j j
j

X w X w
=

= > and 

1
1.

r

j
j

w
=

=  

6. Algorithm, flowchart, and a numerical example 

Algorithm 
1. For every PFN ( , , , , ; ),T a b c d e k=  use the ranking function obtained employ-

ing the α-cut method 

 1 1 (1 )( ) ( ) ( ) (1 )( ) (2 )
2 2 2 2

k kR T k a e b d a e k b d c b d−   = + + + − − + − + + − −   
   

   

to obtain the crisp model M2 from the fuzzy model M1. 

2. Obtain (0)

1
.

r

j j
j

X w X
=

=  

3. Set t = 1 in model M2. 
4. Find ( )(1) (0) (0) (0)

1 2( ), ( ), ..., ( ) .rH X H X H Xα =   

5. Put (1)α  in each ( )( )t
jP α  to obtain the model M3. 

6. Obtain an equivalent model M4 from model M3 by selecting (1)( )mP α as the 
objective to be optimised with least vale of the .mT  

7. Choose [ , ],1 ,L U
j j j j r j mε ε ε∈ ≤ ≤ ≠  as follows: 

a) when [ , ] [ , ] ,L U
j j j jT T ε ε ϕ− ∩ =  select [ , ].L U

j j jε ε ε∈  
b) otherwise, choose [ , ].j j jT Tε ∈ −  

8. Obtain a set of efficient solutions for model M4 by putting different values of εj. 
9. Test the termination conditions ( )( ) ,1 .t

j jP T j rα ≤ ≤ ≤  If the conditions are 

satisfied, stop the process. Otherwise, proceed to step 9. 
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Fig. 2. Flowchart 
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Obtain a set of efficient 
solutions 



 V. GOYAL et al. 62

10. Find ( )(1)min ( )j j
j

P Tα −  for that j where conditions do not get satisfied. 

11. Determine (1)X to be the solution for which ( )(1)( )j j
j

P Tα −  has the mini-

mum value. 
12. Repeat steps 2–8 and obtain a representative set of efficient solutions for the 

model satisfying the termination conditions. Otherwise, DM can be asked to reset the 
tolerances. 

13. End the process. 

The proposed algorithm is expressed with the help of a flowchart which is shown 
in Fig. 2. 

Numerical example 

2 2
1 3 3 2

1 22 2
2 1

1.7 0.8 2 1.1M1: min ( ) min ( ) , ( )
0.85 2.8 0.83 2.9

x x x xH x H x H x
x x

 + +
= = = + + 

    
    

such that 

 

2 2
1 2 3

2 2
2 3 1

2 2
3 1 2

2 2 2
1 2 3

1 2 3

2 1.1 0.85 3.9

1.9 0.8 1.1 5.01

0.83 1.1 0.9 2.9

0.9 1.01 0.83 5.9

, , 0

x x x

x x x

S x x x

x x x

x x x

 + + ≤
 
 + + ≤
  = + + ≥ 
 

+ + ≤ 
 ≥  

  

   

   

   
 

where 
1.7 (1.5,1.7,1.9, 2.1, 2.2),=  0.8 (0.8, 0.85, 0.9, 0.95,1)=   
0.85 (0.85, 0.92, 0.96,1,1.07),=  2.8 (2.8, 2.92, 2.96, 3, 3.1)=   
2 (1.9,1.95,1.975, 2, 2.1),=  1.1 (1.1,1.13,1.16,1.19,1.2)=   
0.83 (0.8, 0.83, 0.86, 0.89, 0.91),=  2.9 (2.83, 2.86, 2.88, 2.9, 2.92)=   
1.9 (1.91,1.93,1.95,1.97,1.99),=  0.9 (0.87, 0.88, 0.91, 0.94, 0.96)=  
1.01 (1.01,1.04,1.06,1.08,1.1),=  3.9 (3.85, 3.89, 3.91, 3.93, 3.98)=   
5.01 (4.87, 4.93, 4.95, 4.97, 4.99),=  5.9 (5.9, 5.91, 5.93, 5.95, 5.98)=   
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This model is first converted into a crisp model, using the ranking function. Thus, 
we find the ranking function corresponding to every PFN coefficient as given below: 

( )(1.7) 1.8825, 0.8 0.9, (0.85) 0.96
(2.8) 2.9565, (2) 1.98375, (1.1) 1.1565
(0.83) 0.85825, (2.9) 2.87825, (1.9) 1.95
(0.9) 0.91175, (1.01) 1.05825, (3.9) 3.91175
(5.01) 4.943, (5.9) 5.9

R R R
R R R
R R R
R R R
R R

= = =
= = =
= = =

= = =
= =

 
  
  
  
  335,

 

Thus, the crisp model M2 obtained from model M1 is given below 

2 2
1 3 3 2

1 22 2
2 1

1.8825 0.9 1.98375 1.1565M2: min ( ) , ( )
0.96 2.9565 0.85825 2.87825

x x x xH x H x
x x

 + += = + + 
 

such that 

2 2
1 2 3

2 2
2 3 1

2 2
3 1 2

2 2 2
1 2 3

1 2 3

1.98375 1.1565 0.96 3.91175

1.95 0.9 1.1565 4.943

0.85825 1.1565 0.91175 2.87825

0.91175 1.05825 0.85825 5.9335

, , 0

x x x

x x x

x x x

x x x

x x x

+ + ≤

+ + ≤

+ + ≥

+ + ≤

≥  

First, we find individual solutions for 1( )H x  and 2 ( )H x  using Lingo 15 software 
given as: 1 2(0, 1.27, 1.42), (1.17, 0.423, 1.03).X X= =  

Table 2. Pay-off table at initial solutions 

jX  1( )jH X  2 ( )jH X  

1X  0.28 1.9 

2X  1.12 0.64 
 
Table 2 shows the values of objective functions at individual optimal solutions of 

both functions. Here, equal weightage is given to each solution, i.e., 1 2 0.5.w w= =
Thus, the initial solution to model M2 is given by (0)

1 1 2 2.X w X w X= +  
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(0) (0.585, 0.8465, 1.225)X =  

Next, the initial parametric vector is found as  

(1) (0) (0)
1 2( ( ), ( )) (0.48, 1.25)H X H Xα = =  

With the help of this parametric vector, model M3, which is a non-fractional mod-
el, is obtained and given as below 

{ }(1) (1)
1 1 2 2M3: min ( ) ( ), ( )H x P Pα α=   

such that ,x S∈ where 

(1) 2 2
1 1 3 2( ) 1.8825 0.9 0.4608 1.41912P x x xα = + −  

and 

 (1) 2 2
2 3 2 1( ) 1.98375 1.1565 1.0728 3.5978P x x xα = + − −  

The initial solution to this model is given as 

1 (0,1.27,1.42),X =  2 (1.18, 0.36,1.05)X  

Table 3. Pay-off table of ( )j jP X  

jX  1( )jP X  2 ( )jP X  
1X  –0.88 1.87 

2X  2.09 –2.49 
 
Table 3 shows the values of ( )jP x  at .jX  Next, the termination constants are de-

fined by DM and are taken as 1 20.2, 0.3.T T= =  As 1 2 ,T T<  therefore, model M3 is 
reduced to model M4 (a single objective model) by ε-constraint method which is giv-
en as 

(1) 2 2
1 1 1 3 2( ) 1.8825 0.9 0.4608 1.419124 : minM P x x xα = + − −  

such that  
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(1)
2 2 2 2 2

2 2

2 2

( ) , [ , ]

min{ ( ), 1, 2} 2.49

max{ ( ), 1, 2} 1.87

L U

L
j

U
j

P

x S

P X j

P X j

α ε ε ε ε

ε

ε

≤ ∈

∈

= = = −

= = =

 

As [ 0.3, 0.3] [ 2.49,1.87],− ⊆ −  we select 2 [ 0.3, 0.3],ε ∈ −  and by putting different 
values 2 ,ε  we obtain a representative set of efficient solutions as shown in Table 4. 

Table 4. Table of efficient solutions 

2ε  1x  2x  ( 3x  1P  2P  1( )H x  2( )H x  
–0.3 0.7699 1.193 1.135 0.06 –0.03 0.494 1.16 

–0.24 0.7575 1.205 1.140 0.01 –0.024 0.484 1.17 
–0.18 0.7449 1.216 1.146 –0.02 –0.018 0.474 1.19 
–0.12 0.7337 1.218 1.155 –0.05 –0.012 0.468 1.21 
–0.06 0.7230 1.216 1.165 –0.07 –0.006 0.464 1.23 
0.06 0.7011 1.213 1.184 –0.1 0.0058 0.455 1.27 
0.12 0.6899 1.212 1.194 –0.13 0.012 0.451 1.29 
0.18 0.6785 1.210 1.203 –0.15 0.0178 0.446 1.3 
0.24 0.6668 1.208 1.213 –0.16 0.2399 0.442 1.32 
0.3 0.6549 1.207 1.222 –0.18 0.3 0.438 1.34 

 

  
Fig. 3. Pareto front for objective functions Fig. 4. Pareto front for the efficient solutions 

It is clear that (1)
1 1( )P Tα ≤ and (1)

2 2( ) .P Tα ≤ Thus, we terminate our process and 

finally, the DM has a choice to select any one of the solutions in Table 4 as the 
efficient solution to the model. The Pareto front formed by the efficient solution is 
shown in Figs. 3 and 4. 
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Comparison of the proposed approach with FGP. We used FGP to solve the 
above numerical illustration and found that the values of objectives are given by: 

1( )H x = 0.9728 and 2 ( )H x = 0.6809. Tables 4 clearly show that in both the approach-
es, one of the objectives is better optimised. Figure 5 is a better representation of it. As 
a result, it is concluded that both approaches are comparable, which validates our pro-
posed methodology. 

 
Fig. 5. Comparison of objectives with the proposed approach and FGP 

The usefulness of pentagonal fuzzy numbers over trapezoidal fuzzy numbers. 
In the above considered numerical example, consider the coefficients in both the ob-
jectives and constraints as trapezoidal fuzzy numbers (TrFN) rather than PFN. 

2 2
1 3 3 2

1 22 2
2 1

1.7 0.8 2 1.1min ( ) min ( ) , ( )
0.85 2.8 0.83 2.9

x x x xH x H x H x
x x

 + +
= = = + + 

    
    

subject to 
2 2
1 2 3

2 2
2 3 1

2 2
3 1 2

2 2 2
1 2 3

1 2 3

2 1.1 0.85 3.9

1.9 0.8 1.1 5.01

0.83 1.1 0.9 2.9

0.9 1.01 0.83 5.9

, , 0

S x x x

x x x

x x x

x x x

x x x

= + + ≤

+ + ≤

+ + ≥

+ + ≤

≥

  

   

   

   
 

where 
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1.7 (1.5,1.7, 2.1, 2.2),=   0.8 (0.8, 0.85, 0.95,1)=  
0.85 (0.85, 0.92,1,1.07),=   2.8 (2.8, 2.92, 3, 3.1)=  
2 (1.9,1.95, 2, 2.1),=   1.1 (1.1,1.13,1.19,1.2)=  
0.83 (0.8, 0.83, 0.89, 0.91),=   2.9 (2.83, 2.86, 2.9, 2.92)=  
1.9 (1.91,1.93,1.97,1.99),=   0.9 (0.87, 0.88, 0.94, 0.96)=  
1.01 (1.01,1.04,1.08,1.1),=   3.9 (3.85, 3.89, 3.93, 3.98)=  
5.01 (4.87, 4.93, 4.97, 4.99),=   5.9 (5.9, 5.91, 5.95, 5.98)=  
This is solved with the above-proposed methodology and the values of the objec-

tive functions are shown in the Table 5. 

Table 5. Objective function values with trapezoidal fuzzy numbers 

H1(x) 0.4978 0.4886 0.4844 0.4802 0.4758 0.4672 0.4627 0.4583 0.4538 0.4492 
H2(x) 1.237 1.254 1.272 1.289 1.308 1.344 1.362 1.381 1.399 1.418 

 
Fig. 6. Comparison of H1(x) in MOQFP models with TrFN and PFN 

 
Fig. 7. Comparison of H2(x) in MOQFP models with TrFN and PFN 
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From Tables 4 and 5, it is clear that the values of objective functions of the prob-
lem with pentagonal fuzzy numbers as coefficients are better optimised than that of 
the problem with trapezoidal fuzzy numbers as coefficients. Thus, this presents the 
usefulness of pentagonal fuzzy numbers in those circumstances where even minor 
changes in the objectives play a major role in the decision-making process. This com-
parison is better represented in Figs. 6 and 7 which clearly depict the effectiveness of 
using pentagonal fuzzy numbers. 

Application in the field of production. Consider an automobile unit that produc-
es three bikes P, Q, and R each with two models: 5G and 6G. Assume that the bikes 
selling prices are Rs. 1 1 1, ,P Q RS S S  5G models and Rs. 2 2 2, ,P Q RS S S for 6G models, as 
determined by the manufacturing unit. The unit has established a goal of creating the 
most B bikes. The manufacturing expenses of one model of 5G bikes are Rs. a1, b1, c1 
with an additional cost of Rs. l per each 5G bike of all types for time-bound comple-
tion of the target due to additional input expenditures. Similarly, one model of 6G bikes 
costs Rs. a2, b2, c2 to manufacture, with an additional cost of Rs. m for each 6G bike. 
Assume the unit produces x1, y1, z1 units of 5G bikes and x2, y12, z2 units of 6G bikes. 

The costs for 5G bikes are Rs. 1 1 1
1 1 1, ,P Q RS x S y S z and 6G variants are Rs. 1

2 ,PS x  
1

2 ,QS y  1
2.RS z  Each 5G bike costs Rs. 1 1 1 1 1 1, , ,a lx b ly c lz+ + + while each 6G bike 

costs Rs. 2 2 2 2 2 2, , .a mx b my c mz+ + +  As a result, the overall cost of 5G automo-
biles is Rs. 1 1 1 1 1 1 1 1 1( ) , ( ) , ( ) ,a lx x b ly y c lz z+ + + and the entire cost of top model cars is 
Rs. 2 2 2 2 2 2 2 2 2( ) , ( ) , ( ) .a mx x b my y c mz z+ + +  Every manufacturing unit’s goal is to 
maximise profit per unit cost of production. As a result, this production challenge is 
finally modelled as QFPP, which is written as: 

( )

( )

1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1
1 1 1 1 1 1 1 1 1

2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2 2

max ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

P Q R

P Q R

H x

S x S y S z a lx x b ly y c lz z
H x

a lx x b ly y c lz z

S x S y S z a mx x b my y c mz z
H x

a mx x b my y c mz z

 + + − + + + + +
= + + + + +

= 
 + + − + + + + +

= + + + + +

  

subject to 

1 1 1 2 2 2

1 1 1 2 2 2, , , , , 0
x y z x y z B
x y z x y z

+ + + + + ≤
≥
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7. Conclusion 

A MOQFP model with PFN as coefficients in objectives as well as constraints is 
solved to get an efficient solution. The ranking function obtained by the mean method 
of α-cut is used to tackle PFN coefficients and to obtain a crisp model. Then, an itera-
tive and interactive parametric approach is presented which is efficient in transforming 
a fractional model into a non-fractional one. Further, this approach is coupled with the 
ε-constraint method to tackle multiple objectives and obtain a single objective model 
which is easy to solve. This method changes the feasible region in such a way that we 
obtain a better representative set of efficient solutions. The proposed approach is very 
efficient in finding the solution as it converges fast towards the best optimal solution 
because the value of the parameter 𝛼௝ decreases at each level of iteration. Also, a nu-
merical is solved in the end along with the comparison of the approach proposed with 
FGP to express the feasibility of the approach. This can also be extended for finding 
solutions to MOQFP problems with interval valued, intuitionistic, neutrosophic fuzzy 
numbers as coefficients and also to Bi-level and multi-level programming problems. 
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