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Concentration dependencies of the Pij Peusner coeffcient for  
the non-electrolyte ternary solutions 

STĘŻENIOWE ZALEŻNOŚCI WSPÓŁCZYNNIKÓW PEUSNERA PIJ  DLA TERNARNYCH 
ROZTWORÓW NIEELEKTROLITÓW  

Streszczenie: Termodynamika sieciowa Peusne-
ra należy do grupy termodynamiki współcze-
snej. Stanowi ona wygodne ramy badawcze 
transportów membranowych. Jednym z wielu 
narzędzi badawczych transportu membrano-
wego są równania Kedem - Katchalsky’ego. 
Sieciowe postaci hybrydowych równań Kedem-
Katchalsky’ego (K-K) dla ternarnych roztworów 
nieelektrolitowych mogą zwierać jeden z sze-
ściu współczynników Peusnera: Hij, Wij, Nij, Kij, Sij 

lub Pij (i, j  {1, 2, 3}), tworzących macierze 
trzeciego stopnia współczynników Peusnera 
[H], [W], [N], [K], [S] lub [P]. Celem pracy było 
obliczenie rodziny zależności współczynników 

Peusnera Pij (i, j  {1, 2, 3}), od średniego stęże-
nia jednego składnika jednorodnego roztworu 

w membranie (   ) dla kilku różnych, ustalonych 
wartości drugiego składnika (   ). Analizowano 
transport wodnych roztworów glukozy i etano-
lu przez membranę o parametrach transpor-
towych Lp, σ i ω, przy pomocy sieciowych 
równań K-K dla ternarnych roztworów nieelek-
trolitów, zawierających współczynnik Peusnera 
Pij. Stwierdzono, że współczynniki Pij są nieli-
niowo (hiperbolicznie) zależne od stężeń      

i    . Nieliniowość owych współczynników 
wynika z właściwości równań matematycznych 

Abstract. Peusner’s Network Thermodynamics 
belongs to a group of modern thermodynam-
ics. It provides a convenient research frame-
work for membrane transports. One of the 
many research tools to study membrane 
transport are Kedem-Katchalsky equations. A 
network forms of hybrid Kedem-Katchalsky 
equations (K-K) for ternary non-electrolyte 
solutions may contain one of the six Peusner 

coefficients i.e. Hij, Wij, Nij, Kij, Sij or Pij (i, j  {1, 2, 
3}) that form third-order matrices of the 
Peusner coefficients i.e. [H], [W], [N], [K], [S] or 
[P]. Aim of this study was to calculation of 
family of dependencies of Peusner coefficients 

Pij (i, j  {1, 2, 3}) on average concentration of a 
homogeneous solution of one component in a 

membrane (   ) for several different values of 
the second component (   ). Calculations were 
made for aqueous glucose and ethanol solu-
tions and membrane with transport parame-
ters Lp, σ and ω on the basis of network K-K 
equations for ternary solutions of non-
electrolytes that contain the coefficient Pij. It 
has been shown that the Pij are non-linearly 
(hyperbolic) dependent on solutions concentra-

tions     and    . Non-linearity of coefficients Pij 
results from the properties of mathematical 
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INTRODUCTION 

Membrane transport processes are of interest in many fields of sci-

ence, technology and medicine [Katchalsky, Curran, 1965; Baker, 2012]. 

Kedem-Katchalsky formalism, developed on the basis of non-equilibrium 

thermodynamics,  is one of the most important methods to analyze mem-

brane transport of both homogenous and non-homogenous solutions 

[Katchalsky & Curran, 1965; Kargol & Kargol, 2011]. Non-homogeneity is a 

typical feature of physicochemical systems. It is manifested on various levels 

of matter organization by formations such as equilibrium or dissipative struc-

tures that may undergo at least partial destruction in certain conditions 

[Ślęzak 1989; Kondepudi & Prigogine, 2006]. In contrast, homogeneity is an 

idealized state that is demonstrated only under laboratory conditions. Thus, 

homogeneity state of solutions separated by a membrane can be nearly 

accomplished by mechanical stirring of the solutions. Stirring destroys both 

equilibrium and dissipative structures that are formed on the membrane-

solution contact surface [Ślęzak, 1989; Dworecki et al., 2005].  

Basic foundations, laws and rules of the Network Thermodynamics 

(NT) as well as its possible applications were formulated in the nineteen-

seventies [Peusner, 1970; Oster, Perelson & Katchalsky, 1971; Peusner, 

1986]. One of the important areas of NT applications is membrane transport 

[Imai, 1996; Moya & Horno 2004; Szczepański & Wódzki, 2013; Bristow & 

Kennedy, 2013]. Peusner showed that NT enables transformation of Kedem-

Katchalsky equations (K-K) for binary homogenous solutions by symmetrical 

or hybrid transformation of thermodynamic networks [Peusner, 1986]. 

Based on Peusner idea, Ślęzak and collaborations presented network form of 

K-K equations for binary non-homogenous non-electrolyte solutions [Ślęzak 

et al., 2013; Batko et al., 2014a; 2014b; 2015]. 

Network Kedem-Katchalsky equations (K-K) contain Peusner coeffi-

cients that can be calculated based on experimentally determined transport 
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parameters i.e. hydraulic permeability (Lp), solute permeability (ω) and re-

flection (σ) coefficients [Peusner  1986; Ślęzak et al. 2013; Batko et al. 2014a; 

2014b; 2015]. For binary homogenous non-electrolyte solutions, we have 

two symmetrical and two hybrid forms of network K-K equations. Symmet-

rical forms of network K-K equations for binary solutions contain Peusner 

coefficients Rij or Lij, whereas hybrid forms contain Peusner coefficients Hij 

and Pij [Peusner 1986; Ślęzak et al. 2013; Batko et al., 2014a; 2014b; 2015]. 

We have two symmetrical and six hybrid forms of network K-K equations for 

ternary and homogenous non-electrolyte solutions [Jasik-Ślęzak et al., 2014]. 

Similar to binary solutions, symmetrical forms of K-K equations contain 

Peusner coefficients Rij and Lij, whereas hybrid forms contain Peusner coeffi-

cients Hij, Wij, Nij, Kij, Sij and Pij.  

 In series of our recent papers we presented network forms of K-K equa-

tions for homogeneous ternary non-electrolyte solutions containing Peusner 

coefficients Rij, Lij, Hij, Wij, Sij, Nij, Kij and Pij (i, j  {1, 2, 3}) that are elements of 

the third-order matrix  [R], [L], [H], [W], [N], [K], [S] or [P], respectively [Batko 

et al. 2014b; Jasik-Ślęzak et al., 2014]. Dependencies of these coefficients on 

average concentration of one component of the solution in the membrane (

1C ) were calculated for established value of the second one ( 2C ), values of 

these coefficients were also compared (Batko et al. 2014b; Jasik-Ślęzak et al., 

2014). To expand scope of the calculations, in this paper we show depend-

encies Pij=f( 1C , 2C =const.) (i, j  {1, 2, 3}) calculated for six established 2C  

values. Coefficients were calculated based on mathematical model present-

ed in Batko and colleagues paper (Batko et al., 2014b). 
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where: Jv – volume flux, Js1 and Js2 – solute fluxes of substances “1” and “2” 

through the membrane in conditions of solution homogeneity, Lp – hydraulic 

permeability coefficient, σ1 and σ2 – reflection coefficients of substances “1” 

and “2”, respectively, 11 and ω22 – solute permeability coefficients of sub-

stances “1” and “2” generated by forces with indexes “1” and “2”, 12 and 

ω21 – cross solute permeability coefficient of substances “1” and “2” gener-

ated by forces with indexes “2” and “1”; Δ=ΔP+Δπ1+Δπ2, ΔP=Ph–Pl – hy-

drostatic pressures difference (Ph, Pl are higher and lower value of hydrostat-

ic pressure); Δπk=RT(Ckh – Ckl) is osmotic pressures difference (RT is a product 

of the gas constant and thermodynamic temperature, whereas Ch and Cl are 

solution concentrations, k=1, 2), 11
)])[ln(( 

 klkhklkhk CCCCC  – average 

solute concentration; α1=(1–σ1)[ω22(1–σ1)+ω21(1–σ2)], A=ω11ω22–ω21ω12, 

α2=(1–σ2)[ω11(1–σ2)+ω12(1–σ1)]. 

Denominator of Eqs. (2)-(10) for certain 1C  and 2C  values may take posi-

tive values (for ξ>0), negative (for ξ<0) values or zero (for ξ=0). Besides, for 

ξ=0, Eqs. (2)-(10) have no solution in a real number set and 

                                           
  

   (12) 

where: β1=(1–σ2)
2, β2=(1–σ1)(1–σ2), β3=(1–σ1)

2 

RESULTS OF CALCULATIONS AND DISCUSSION 

Applying an algorithm presented in the papers of Batko and colleagues, 

we calculate of family dependencies of Peusner’s coefficients Pij (i, j {1, 2, 

3}) on average concentration of a homogeneous solution of one component 

in a membrane ( 1C ) for several different values of the second component (

2C ) for Nephrophan hemodialyser membrane (Batko et al., 2014b). Average 

concentration of components “1” and “2” in a membrane ( 1C , 2C ) was cal-
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culated based on equations 1C =(C1h–C1l)[ln (C1hC1l
-1)]-1 and 2C =(C2h–C2l)[ln 

(C2hC2l
-1)]-1. The following assumptions were used for calculations: 

1) Concentrations of a substance “1” in a compartment h varies in a range 

from C1h=1 mol m-3 to C1h=2301 mol m-3,  

2) Concentrations of a substance “2” in a compartment h is constant and 

equals C2h=6 mol m-3 for the first series of calculations, for the second se-

ries  C2h=11 mol m-3, for the third one  C2h=31 mol m-3, for the fourth 

one  C2h=201 mol m-3, for the fifth one  C2h=601 mol m-3 and for the 

sixth one  C2h=1051 mol m-3,  

3) Concentrations of substances “1” and “2” located in compartment l are 

constant and equal C1l=C2l=1 mol m-3.  

The calculations in Eqs. (2)-(10) were made for the following values of hy-

draulic permeability (Lp), reflection (1, 2), diffusive permeability (ω11, ω22, 

ω21, ω12) coefficients: Lp=4.910-12 m3N-1s-1, 1=0.068, 2=0.025, ω11=0.810–

9 mol N-1s-1, ω12=0.8110–13 mol N-1s-1 and ω22=1.4310–9 mol N-1s-1 and 

ω21=1.6310–12 mol N-1s-1 (for exemple Batko et al., 2014b). These values 

were determined in our previous study (Ślęzak, 1989). Calculations of con-

centration dependencies of coefficients P11, P12, P13, P21, P22, P23, P31, P32 and 

P33 resulted in curves presented in Figs. 1 and 2.  

Denominator of Eqs. (2)-(10) may take positive values, negative values or 

zero. Considering that 1C  and 2C are always positive, ξ value determines sign 

of the denominator. Denominator is negative for ξ<0, and positive for ξ>0. 

Thus, it is important to calculate for which values of 1C  and 2C  condition 

ξ=0 is fulfilled. Therefore, considering values of transport parameters for the 

Nephrophan hemodializer membrane in Eq. (12), we obtain the following 

values of 1C  for the established values of 2C , 1C =186.05 mol m-3 (for 2C

=2.79 mol m-3), 1C =185.21 mol m-3 (for 2C =4.17 mol m-3), 1C =182.41 mol 

m-3 (for 2C  = 8.74 mol m-3), 1C =164.69 mol m-3 (for 2C =37.71 mol m-3), 1C

=130.40 mol m-3 (for 2C =93.77 mol m-3) and  1C =95.44 mol m-3 (for 2C

=150.92 mol m-3).  
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The individual dependencies Pij=f( 1C , 2C =const.) for i, j{1, 2, 3} obtained 

on the base of Eqs. (2)-(5) and (7)-(9) result in pairs of coupled hyperboles 

(Figs. 1A and 1B). One of the curves is located in the first and the other in the 

fourth quadrant of a coordinate system. Thus, values of Pij coefficients that 

form curves located in the first quadrant are positive, and values of Pij coeffi-

cients that form curves located in the fourth quadrant are negative. In con-

trast, results of calculations obtained based on Eq. (6) and illustrated by 

graphs presented in Fig. 3 show that dependencies  Pij=f( 1C , 2C =const.) for i, 

j{1, 2, 3} form three hyperbolic curves. Two of these curves are paired and 

one is not, since conditions 1C >0 and 2C >0 are always fulfilled. Two of the 

curves are located in the first quadrant of a coordinate system and one in 

the fourth quadrant of a coordinate system. Coefficients Pij for i, j{1, 2, 3} 

from the first quadrant of a coordinate system are positive, and from fourth 

are negative.  

Curves presented in Fig. 1A illustrate dependence P11=f( 1C , 2C =const.) 

calculated based on Eq. (2). If ξ>0 then curves 1, 2, 3 and 4 located in the 

first quadrant of a coordinate system are solutions of Eq. (2). In contrast, if 

ξ<0 then curves 1’, 2’, 3’ and 4’ located in the fourth quadrant of a coordi-

nate system are solutions of Eq. (2). Adequate pair of curves (1 and 1’, 2 and 

2’, 3 and 3’, 4 and 4’) form pair of symmetrical hyperboles. Course of the 

curves presented in this figure indicate that curves illustrating dependence 

P11=f( 1C , 2C =const.) move in direction of descending 1C values with increas-

ing 2C  values. Additionally, curves 1-4 are located in the first quadrant of a 

coordinate system if 1C <186.05 mol m-3 (for curve 1),  1C <164.69 mol m-3 

(for curve 2), 1C <130.40 mol m-3 (for curve 3) and  1C < 95.44 mol m-3 (for 

curve 4). This indicates that curves 1’-4’ are located in the fourth quadrant of 

a coordinate system, since 1C >186.05 mol m-3 (for curve 1’),  1C >164.69 

mol m-3 (for curve 2’), 1C >130.40 mol m-3 (for curve 3’) and 1C >95.44 mol 

m-3 (for curve 4’).  
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Fig. 1. Graphic illustration of dependence P11=f( 1C , 2C =const.) calculated based on Eq. (2) (A) 

and dependence P12=f( 1C , 2C =const.) calculated based on Eq. (3) (B) for solutions consisting 

of a solvent and two dissolved substances denoted with indexes "1" and "2". The average 

substance concentration indicated by the subscript "2" was constant and equaled: 2C =2.79 

mol m
-3

 (curves 1 and 1’),  2C =37.71 mol m
-3

 (curves 2 and 2’), 2C =93.77 mol m
-3

 (curves 3 

and 3’) and 2C =150.92 mol m
-3

 (curves 4 and 4’).  

The course of curves illustrating dependence P23=f( 1C , 2C =const.) and 

P32=f( 1C , 2C =const.) obtained based on Eqs. (7) and (9) is very similar to the 

course of curves presented in Fig. 1. It should be indicated that coefficients 

P23 and P32 are measured in the same units (N∙s∙mol-1) and slightly differ for 

the same 1C  and 2C , whereas  coefficient P11 is measured in different unit 

than coefficients P23 and P32 and it is also several ranges lower for the same 

1C  and 2C . 

Curves shown in Fig. 1B illustrate dependence P12=f( 1C , 2C =const.) calcu-

lated based on Eq. (3) for different 2C values. In contrast to curves shown in 

Fig.1, for ξ>0, curves 1’-4’ located in the fourth quadrant of a coordinate 

system are a solution of Eq. (3). If ξ<0, curves 1-4 located in the first quad-

rant of a coordinate system are a solution of Eq. (3). Corresponding pairs of 

these curves (1 and 1’, 2 and 2’, 3 and 3’, 4 and 4’) form pairs of symmetrical 

hyperboles. It may be noticed that pairs of hyperboles illustrating depend-

ence P12=f( 1C , 2C =const.) are reversed compared to hyperbolas illustrating 

dependence P11=f( 1C , 2C =const.) for the same 2C values. The course of 

curves presented in this figure indicates that curves illustrating dependence 
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P12=f( 1C , 2C =const.) move in direction of descending 1C values with increas-

ing 2C  values. Moreover, curves 1-4 are located in the first quadrant of a 

coordinate system if 1C >186.05 mol m-3 (for curve 1), 1C >164.69 mol m-3 

(for curve 2), 1C >130.40 mol m-3 (for curve 3) and  1C >95.44 mol m-3 (for 

curve 4). In contrast, curves 1’- 4’ are located in the fourth quadrant of a 

coordinate system, since 1C <186.05 mol m-3 (for curve 1’), 1C <164.69 mol 

m-3 (for curve 2’), 1C <130.40 mol m-3 (for curve 3’) and 1C <95.44 mol m-3 

(for curve 4’).  

Families of curves 1-4, 1’-4’ and 1” -4” presented in Fig. 2A illustrate de-

pendence P22=f( 1C , 2C =const.) that is calculated based on Eq. (6). If ξ>0, 

then hyperbolic curves 1-4 and 1” -4” located in the first quadrant of a coor-

dinate system are a solution of Eq. (6). 

 If ξ<0, then hyperbolic curves 1’-4’ located in the fourth quadrant of a 

coordinate system are solution of Eq. (6). It should be mentioned that curves 

1 and 1’, 2 and 2’, 3 and 3’, 4 and 4’ form pair of symmetrical hyperboles. 

The course of curves presented in this figure indicates that curves illustrating 

dependence P22=f( 1C , 2C =const.) move in direction of descending 1C  values 

with increasing 2C  values. Moreover, curves 1-4 are located in the first 

quadrant of a coordinate system if 1C <186.05 mol m-3 (for curve 1), 1C

<164.69 mol m-3 (for curve 2), 1C <130.40 mol m-3 (for curve 3) and 1C

<95.44 mol m-3 (for curve 4).  

This means that curves 1’–4’ are located in the fourth quadrant of a co-

ordinate system, since 1C >186.05 mol m-3 (for curve 1’), 1C >164.69 mol m-3 

(for curve 2’), 1C >130.40 mol m-3 (for curve 3’) and 1C >95.44 mol m-3 (for 

curve 4’). In contrast, based on analysis of the course of curves 1”-4”, we can 

state that curves illustrating dependence P22=f( 1C , 2C =const.) move in direc-

tion of ascending 1C  values with increasing 2C  values and that curves 1” -4” 

nearly overlap. 

Families of curves 1-6 and 1’-6’ presented in Fig. 2B graphically illustrate 

dependence P33=f( 1C , 2C =const.) calculated based on Eq. (10). If ξ>0, curves  
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Fig. 2. Graphic illustration of dependence P22=f( 1C , 2C =const.) calculated based on equation 

(6) (2A) and dependence P33=f( 1C , 2C =const.) calculated based on Eq. (10) (2B) for solutions 

consisting of a solvent and two dissolved substances denoted with indexes "1" and "2".  

The average substance concentration indicated by the subscript "2" in Fig. 2A was constant 

and equaled: 2C =2.79 mol m-3 (curves 1 and 1’), 2C =37.71 mol m-3 (curves 2 and 2’), 2C

=93.77 mol m-3 (curves 3 and 3’) and 2C =150.92 mol m-3 (curves 4 and 4’). The average 
substance concentration indicated with the subscript "2" in Fig. 2B was constant and equaled: 

2C =2.79 mol m-3 (curves 1 and 1’), 2C =4.17 mol m-3 (curves 2 and 2’), 2C =8.74 mol m-3 

(curves 3 and 3’), 2C =37.71 mol m-3 (curves 4 and 4’), 2C =93.77 mol m-3 (curves 5 and 5’) 

and 2C =150.92 mol m-3 (curves 6 and 6’). 

1–6 located in the first quadrant of a coordinate system are a solution of Eq. 

(10). In contrast, if ξ<0, curves 1’-6’ located in the first and fourth quadrant 

of a coordinate system are a solution of Eq. (10). This figure shows that pairs 

of these curves 1 and 1’, 2 and 2’, 3 and 3’, 4 and 4’, 5 and 5’, 6 and 6’ form 

pairs of symmetrical hyperboles. Courses of the curves presented in this figure indi-

cate that curves illustrating dependence P33=f( 1C , 2C =const.) move in direction of 

descending 1C  values with increasing 2C  values. Moreover, it may be noticed that 

curves 1-6 are located in the first quadrant of a coordinate system if 1C <186.05 mol 

m-3 (for curve 1),  1C <185.21 mol m-3 (for curve 2), 1C <182.41 mol m-3 (for curve 3), 

1C <164.69 mol m-3 (for curve 4), 1C <130.40 mol m-3 (for curve 5) and  1C <95.44 

mol m-3 (for curve 6). This means that curves 1’- 6’ are located in the first and fourth 

quadrant of a coordinate system, since 1C >186.05 mol m-3 (for curve 1), 1C >185.21 
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mol m-3 (for curve 2), 1C >182.41 mol m-3 (for curve 3), 1C >164.69 mol m-3 (for 

curve 4), 1C >130.40 mol m-3 (for curve 5) and 1C >95.44 mol m-3 (for curve 6).  

Curves 1’–6’ pass from fourth to the first quadrant through a point where 

P33=0 (Batko et al., 2014b). Using Eq. (10) we can show that for this point 1C

=ω11[ Lp(1–σ1)
2]-1. Considering data in this equation, we obtain 1C =187.96 

mol m-3. This means that curve 1 is located in the fourth quadrant of a coor-

dinate system for 186.05 mol m-3< 1C <187.96 mol m-3, curve 2 – for 185.21 

mol m-3< 1C <187.96 mol m-3, curve 3 – for 182.41 mol m-3< 1C < 187.96 mol 

m-3, curve 4 for 164.69 mol m-3< 1C < 187.96 mol m-3, curve 5 – for 130.40 

mol m-3< 1C < 187.96 mol m-3 and curve 6 – for 95.44 mol m-3< 1C < 187.96 

mol m-3. For 1C >187.96 mol m-3 curves 1’–6’ are located in the first quadrant 

of a coordinate system.  

CONCLUSIONS 

The Peusner coefficients Pij (i, j  {1, 2, 3}) are non-linearly dependent on 

solutions concentrations 1C  and 2C . Non-linearity of these coefficients re-

sults from the properties of mathematical equations describing coefficients 

Pij. Equations describing dependence Pij=f( 1C , 2C =const.) for coefficients P11, 

P12, P13, P21, P23, P31 and P32 and different 2C values have solutions that form 

pairs of coupled hyperbolic curves located in the first and fourth quadrant of 

a coordinate system. In turn, for coefficient P22, have solutions that form a 

family of coupled symmetrical hyperbolic curves located in the first and 

fourth quadrant of a coordinate system and a family of unpaired hyperbolic 

curves located in the first quadrant of a coordinate system. While for coeffi-

cient P33 has solutions forms families of coupled symmetrical hyperbolic 

curves. Top part of the family of curve pairs is located the first, whereas bot-

tom part in the fourth and first quadrant of a coordinate system. Coefficient 

P33 changes from negative to positive upon passing through a point with the 

following coordinates (P33=0, 1C =187.96 mol m-3). Besides the network form 

of  K-K equations containing Peusner coefficients Pij (i, j  {1, 2, 3}) is a con-

venient tool suitable for the examination of the membrane transport. The 

presented calculations showed  that the values of coefficients Pij are sensi-
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tive to the composition and concentration of the solutions separated by a 

membrane. 
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